Counter anion effect on molecular structures of some iodobiruthenocenium and iodoferrocenylruthenocenium salts

Masanobu Watanabe *, Izumi Motoyama, Toshio Takayama
Deparment of Chemistry, Facuhy of Engineering, Kanagawa University, Rokkakubashi, Yokohama 221, Japan

Received 10 January 1996: in revised form 17 April 1996

Abstract

Oxidations of biruthenocene (RcRc) and ferrocenylruthenocene (FcRc) with an equivalent amount of iodine or iodoruthenocenium ${ }^{+} \mathrm{Y}^{-}$ $\left([\mathrm{RcHI}]^{+} \mathbf{Y}^{-}\right), Y=\mathrm{BF}_{5}^{-}$and PF_{6}^{-}) gave monocationic halometailocenium salts formulated as $\left[\mathrm{M}^{1 /} \mathrm{Cp}^{\left.\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{1 \mathrm{~V}} \mathrm{I}\right]^{+} \mathrm{Y}^{-} .}\right.$ $\left(M=R u, Y=1,1, B F_{4} 2 ; M=F e, Y=I_{3} 3, B F_{4} 4, P F_{6} 5\right)$. The crystal structures of 1,3 and 4 were analyzea by single-crystal X-ray diffraction. The crystal of 1 is monoclinic, space group $P 2 / / c, a=10.737(3), b=23.957(3), c=9.936(3) \AA, \beta=110.96(2)^{\circ}, Z=4$, finall $R=0.084$. The crystal of 3 is monoclinic, space group $P 2 / c, a=10.575(3), b=23.811(6), c=9.902(4) \AA, \beta=110.85(3)^{\circ}$, $Z=4$, finall $R=0.049$. The crystal of 4 is orthorhombic, space group $P 2,2,2, a=9.871(10), b=25.581(10), c=7.810(3) \AA, Z=4$. final $R=0.094$. The most interesting structural difference between the $I_{3}(1.3)$ and other salts $(2,4,5)$ is found in the direction of the $\mathrm{Ru}^{\mathrm{IV}} \mathrm{I}$ bond with respect to the remaining half of the $\mathrm{M}^{11} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)(\mathrm{M}=\mathrm{Ru}, \mathrm{Fe})$ moiety. Because one end of the I_{3} anion sits above the $\mathrm{C}_{5} \mathrm{H}_{4}$ plane of the $\mathrm{M}^{\prime \prime} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ moiety, the $\mathrm{Ru}^{\mathrm{IV}}-1$ bond is fixed in the trans position to the $\mathrm{M}^{\prime \prime} \mathrm{Cp}_{\mathrm{p}}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ moiety, avoiding steric hindrunce between then when the I_{3} salts (1 and $\mathbf{3}$) are crystallized. In the case of the BF_{4}^{-}and PF_{6}^{-}salts, the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{I}^{-1}$ bond sits in the cis position to the $\mathrm{M}^{\prime \prime} \mathrm{Cp}\left(\mathrm{C}_{9} \mathrm{H}_{4}\right)$ moiety, as shown in Scheme 1 , and this conformation gives larger tilting angles berween the two $\eta^{3}-\mathrm{Cp}$ and $\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{4}$ on the $\mathrm{Ru}{ }^{1 \mathrm{~V}}$ side (e.ge tilting angles 42.4$)^{\circ}$ and 39.21° for 2 and 4 respectively) than those of both I_{3} salts (31.08° for $1,32.73^{\circ}$ for $\mathbf{3}$) due to the van der Watals contact between I and the $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ phane. Such large conformational differences between temperature dependent ${ }^{\text {i5 }}$ Fe-Mossbater spectra were found for 4 and 5 , unlike the case of 3 . probably because of the delocalization of the higher positive $\left[\mathbb{R} \|^{I V} \mathrm{Cp}_{\mathrm{P}}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{\prime}$ charge to the $\mathrm{Fe}^{\prime \prime} \mathrm{C}_{\mathrm{p}}\left(\mathrm{C}_{7} \mathrm{II}_{4}\right)$ moiety for 4 and S .

Arymards: Ruthenium: Iron: Metallocenes

1. Introduction

Recently, the crystal structure of $\mathbf{2}$, formulated as $\left[\mathrm{Ru}^{11} \mathrm{Cp}\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}} \mathrm{I}\right]^{+} \mathrm{BF}_{4}^{-}$has been determined by the present authors using X-ray analysis [1]. Two interesting structural features are found in the cation. One is the larger tilted structure of the $\eta^{5}-\mathrm{Cp}$ and $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ planes in the $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\mathrm{IV}} \mathrm{I}\right]^{+}$moiety. The tilting angle between them is 42.40°, which is much larger than that of iodoruthenocenium ${ }^{+} 1_{3}^{-}\left([\mathrm{RcHI}]^{+}\left[\left[_{3}^{-}\right)\right.\right.$ salt (32.2°) [2]. The other is the non-planarity of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ plame (the dihedral angle between the two $\mathrm{C}_{5} \mathrm{H}_{4}$ planes is 19.35°). As shown in Fig . 1 , the $\mathrm{Ru}^{\mathrm{IV}}-1$ bond is fixed in the cis position to the other half of the
$\mathrm{Ru}{ }^{11} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ moiety, thus these structural features may be caused by steric hindrance between the 1 and two C_{1} atoms (the $I \cdots C(6)(3.188(8) A$) and

1; Ru	Y; ${ }_{3}$	2; Ku	Y; $\mathbf{B F}_{4}$
3; Fe	Y; $\mathbf{1}_{3}$	4; Fe	$\mathrm{Y}, \mathrm{BH}_{4}$
		5; Fe	Y; PIG

Scheme 1.

Fig. I. ornip drawing of cation 2.
(1.. C(11) (3.253(9) \AA) distances are much smaller than the sum of the van der Waals radii of C and I (3.85 $\left.{ }^{\AA}\right)$). To confirm this conclusion and widen our studies, the related salts 1 and $3-5$ were prepared and their "C CP/MAS NMR and ${ }^{37}$ Fe-MÖssbauer spectroscopies carried out. The pesults of the measurements indicated the presence of stuetural differences between them: e, although 3 gives ferrocene-like ${ }^{37} \mathrm{Fe}$-Mössbatuer spectra at all the temperatures, 4 and 5 give temperature dependent ferrocene and ferrocenium-like spectra, suggesting some interaction between the $\left[\mathrm{IRu}{ }^{\text {IV }} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$and $\mathrm{Fe}^{11} \mathrm{Cp}\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)$ moieties for the latter salts. Such counter anion effects were observed only in the solid state (the effect was found to be absent in solution, based on the results of ' H NMR spectroscopy in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$). It is therefore important to investigate the crystal structures of 1,3 and 4 in comparison with that of 2 . The aim of the present work is to discuss the different results of ${ }^{37} \mathrm{Fe}$-Mössbuuer and ${ }^{13} \mathrm{C}$ CP/MAS NMR studies from a structural point of view.

2. Experimental

2.1. Measurements

${ }^{57} \mathrm{Fe}-\mathrm{Mössbauer}$ measurements were carried out us-
ing a ${ }^{37 \mathrm{Co}(\mathrm{Rh}) \text { source moving in constant acceleration }}$
mode, The isomer shift (IS) value was referred to
metallic iron foil. The Mössbauer parameters were ob-
tained by least-squares fitting to Lorentzian peaks. The experimental error of the IS and quadrupole splitting (QS) values was $0.02 \mathrm{~mm} \mathrm{~s}^{-1}$. The ${ }^{3} \mathrm{C} \mathrm{CP} / \mathrm{MAS}$ NMR measurements were carried out by the method reported previously [3].

2.2. X-ray cryscallography

Salts 1, 3. 4 and 5 were prepared by the method reported previously [4]. Crystals ($0.1 \times 0.1 \times 0.3 \mathrm{~mm}^{3}$) of 1 , $\left(0.1 \times 0.1 \times 0.3 \mathrm{~mm}^{1}\right)$ of 3 and ($0.03 \times 0.2 \times 0.3$ mm^{3}) of 4 were selected. X-ray diffraction experiments were carried out on a Rigaku AFC-6A automated fourcircle X-ray diffractometer with graphite monochromated Mo $K \propto$ radiation ($\lambda=0.71073 \hat{A}$). The intensity data were collected at $25 \pm 1^{\circ}$ using the $\omega-2 \theta$ scan mode with a scauning speed of $4^{\circ} \mathrm{min}^{-1}$. The 1 tuice parameters were determined by a least-squares carcula tion with 25 reflections. Crystal stability was checked by recording three standard reflections every 150 reflections, and no significant variations were observed. For 1. 6847 reflections were collected in the range $4^{\circ} \leqq 20$ $\leqq 55^{\circ} .6483$ were unique ($R_{\text {iel }}=0.054$), of which 2811 reflections with $I_{\text {obs }}>2.5 \sigma\left(I_{\text {ots }}\right)$ were used for the structure determination. The scan width was $1.15+$ $0.3 \tan 0$. The refinement of 237 variable parameters converged to $R=\sum\left\|F_{0}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right|=0.084, R_{w}\right.$ $\left.=\left[\sum_{w}\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \sum w F_{0}^{2}\right)\right]^{1 / 2}=0.105$, where $w=$ $4 L p^{2} F_{0}^{2} /\left[S^{2}\left(C+R^{2} B\right)+\left({ }^{\circ} p F_{0}^{2}\right)^{2}\right]$ (where $S=$ scan rate, $C=$ total integrated peak count, $R=$ ratio of scan

Table 1
Crystal and intensity collection data for 1,3 and 4

	1	3	4
Formula	$\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{I}_{4} \mathrm{Ru}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FeI}_{4} \mathrm{Ru}$	$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BF}_{4} \mathrm{FelRu}$
Formula weight	968.12	922.90	628.99
Space group	$P 21 / c$	$P 2_{1} / \mathrm{c}$	P2,2,21
$a(\AA)$	10.737(3)	10.575(3)	9.871(10)
$b(A)$	23.957(3)	$23.811(6)$	25.581(10)
$c(A)$	9.936(3)	9.902(4)	7.810(3)
$\left.\beta{ }^{(}\right)$	110.96 (2)	110.85 (3)	-
$V\left(\mathrm{~A}^{3}\right)$	2386(1)	2329(1)	1972(2)
Z	4	4	4
$D_{\mathrm{x}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.694	2.631	2.118
$T\left({ }^{\circ} \mathrm{C}\right)$	23	23	23
$\lambda(A)$	0.71073	0.71073	0.71073
$\mu\left(\mathrm{cm}^{-1}\right)$	64.45	65.76	31.06
No. of ref.	6483	5157	3287
No. of obs.	2811 ($/>2.5 \sigma(1)$)	$2646(I>2 \sigma(I))$	$1272(/>2.5 \sigma(1))$
R	0.084	0.049	0.094
$\boldsymbol{R}_{\text {w }}$	0.105	0.046	0.102

time to background counting time, $B=$ total background count, $L p=$ Lorentz-polarization factor and p $=\mathrm{p}$-factor). The standard deviation s of an observation of unit weight was 2.53 . For 3,5459 reflections were collected in the range $4^{\circ} \leqq 2 \theta \leqq 55^{\circ}$, 5157 were unique ($R_{\text {in } 1}=0.038$), of which 2646 reflections with $I_{\text {obs }}>$ $2 \sigma\left(l_{\text {obs }}\right)$ were used for the structure determination. The scan width was $1.15+0.3 \tan 0$. The refinement of 235 variable parameters converged to $R=0.049, R_{\mathrm{w}}=$ 0.046 , and s wa 1.93 . For 4, 3287 reflections were collected in the range $4^{\circ} \leqq 2 \theta \leqq 60^{\circ}$. of which 1272 reflections with $I_{\text {sun }}>2.50\left(I_{\text {onn }}\right)$ were used for the structure determination. The scan width was $0.84+0.3$ tan 0 . The refinement of 253 variable parameters converged to $R=0.094, R_{w}=0.102$ and s wis.37.

The non-hydrogen atoms were refined anisotropically by full-matrix least-squares. For 1 and 4, hydrogen atoms were fixed at the calculated positions, and for 3 the atoms were located from the difference of Fourier maps. Neutral atom scattering factors were taken from Cromer and Waber [5]; anomalous dispersion effects corrections were included in $F_{\text {calk }}$ [6], the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley [7]. All calculations were performed using the TEXSAN crystallographic software package [8]. Crystallographic data for 1, 3 and 4 and some of the experimental conditions for the X-ray structure analysis are listed in Table 1.

3. Results and discussion

3.1. Salts 1 and 2

The results of single-crystal X-ray studies of 1 compared with studies of 2 are discussed first. The final
atomic coordinates and equivalent isotropic temperature factors B_{cq} of non-hydrogen atoms, interatomic distances, and selected bond lengths and angles for $\mathbf{1}$ are shown in Tables 2, 3 and 4, and ORTEP drawings of the cation are shown in Fig. 2 with the atom numbering systeru. The cation of 1 is in trans conformation as with neutral RcRc and 2 [1], i.e. the two Ru atoms sit on opposite sides of the planar $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ ligand. The $R u(1) \cdots \operatorname{Ru}(2)$ distance ($5.273(3) \AA$, which is ca. 0.2 \AA smaller than the value for $\mathbf{2 (5 . 4 6 4 (4) \AA) \text {) shows no }}$ interaction between them. The Ru(1)-1 bond length is found to be $2.756(2) \AA$, which is 0.039 and $0.024 \AA$ longer than the conesponding values for the cation 2 and $[\mathrm{RcHII}]^{+} I_{s}^{*}$ respectively. The mean bond distances from $\mathrm{Ru}(1)$ to the ring carbon atoms ($\mathrm{Ku}(1)=\mathrm{C}_{\text {ring }}$) and to the cyclopentadienyl rings ($\mathrm{Ru}(1)-\mathrm{Cp}$) are 2.21(4) and $1.861(6)$ \& respectively, which are closer to those of the $\left[1 \mathrm{Ru}^{\text {IV }} \mathrm{Cp}_{(1}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$moiety of 2 (2.22(2) and $1.879(7) \AA$ respectively). Similarly, mean $R u(2)=C_{\text {ring }}$ (2.11(1) \AA) and Ru(2)-Cp (1.740(3) \AA) bond distances are closer to the values of the Rc moiety of 2 (2.18(1) and $1.812(3) \AA$ respectively). Thus, the cation can be formulated as $\left[\mathrm{Ru} \mathrm{INP}^{\mathrm{Cp}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{\text {V }} \mathrm{I}\right]^{+}$.

The most essential difference between 1 and 2 is found in the direction of the $\mathrm{Ru}^{\mathrm{IV}} \ldots \mathrm{I}^{-}$bond to the other half of the Re moiety. As shown in Fig. 2, I sits in trans position to the Rc moiety. Therefore, a much larger distance $\operatorname{Ru}(2)-I(7.697(3) \AA$) and angle $I(1) R u(1) R u(2)$ (145.2 ${ }^{\circ}$) were found compared with the values for cation 2 (5.398(5) \AA and 105.8° respectively). Moreover, η^{5} $\mathrm{C}_{5} \mathrm{H}_{4}(\mathrm{C}(6-10)$ plane) shows good planarity (the deviations of all C atoms from the least-squares plane are within the range $0.0012-0.0038 \AA$), owing to the $a b$ sence of steric hindrance between $\mathrm{I}(1)$ and $\mathrm{C}(6)$, unlike the case of 2 , where the $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ ring is non-planar

Table 2
Atomic coordinates and isotropic temperature factors for 1

Atom	x	y	z	$B_{\text {eq }}{ }^{\text {a }}$ (\AA^{2})
(I)	-0.5783(2)	-0.28454(7)	-0.3418(2)	5.0
I(2)	-0.4999(2)	-0.05585(8)	$0.1896(2)$	5.7
$1(3)$	-0.2545(2)	-0.11069(7)	$0.1996(2)$	4.7
1(4)	-0.0114(2)	-0.16995(6)	$0.2082(2)$	6.3
$\mathrm{Ru}(1)$	-0.4793(2)	-0.17808(7)	-0.3365(2)	2.5
Ru(2)	-0.0485(2)	-0.05814(9)	-0.2648(2)	3.8
C(1)	-0.560(4)	-0.094(1)	-0.368(6)	7.0
C(2)	-0.651(4)	-0.128(2)	-0.472(4)	7.3
C(3)	-0.696(3)	-0.164(1)	-0.398(5)	6.2
C(4)	-0.642(5)	-0.159(2)	-0.261(6)	9.4
C(5)	-0.549(4)	-0.110(2)	-0.234(4)	8.6
C(6)	-0.281(2)	-0.136(1)	-0.308(2)	2.6
C(7)	-0.335(2)	-0.164(1)	-0.446(3)	3.5
C(8)	-0.344(2)	-0.222(1)	-0.420(3)	3.5
C(9)	-0.297(2)	-0.228(1)	-0.271(3)	3.5
C(10)	-0.260(2)	-0.177(1)	-0.205(2)	3.3
C(11)	-0.247(2)	-0.077(1)	-0.287(2)	2.7
C(12)	-0.245(2)	-0.037(1)	-0.392(2)	3.5
C(13)	-0.180(2)	$0.011(1)$	-0.325(3)	3.4
C(14)	-0.138(2)	0.004(1)	-0.173(2)	3.1
C(15)	-0.177(2)	-0.051(1)	-0.147(2)	2.9
C(16)	$0.051(3)$	-0.131(1)	-0.288(4)	5.8
C(17)	$0.055(3)$	-0.093(1)	-0.391(3)	5.0
C(18)	$0120 \times 2)$	-0.046(1)	-0.324(3)	4.3
C(19)	0.162(2)	-0.053(1)	-0.180(3)	4.3
C(20)	$0.123(2)$	-0.105(1)	$-0.146(3)$	4.9

(the dihedral angle between the plane $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$ and $C(7-10)$ being $11.6\left(0^{\circ}\right)$.
The interplane C(1) ... C(6). C(2) ... C(7). $\mathrm{C}(3) \cdots \mathrm{C}(8), \mathrm{C}(4) \cdots \mathrm{C}(9)$ and $\mathrm{C}(5) \cdots \mathrm{C}(10)$ dis.
tances are found to be 3.00(4), 3.40(5), 4.10(4), 4.10(6) and $3.40(5) \AA$ respectively. The largest distance (4.10 \AA) is closer to the value for $[\mathrm{RcHI}]^{+} \mathrm{I}_{3}^{-}(4.11(3) \AA$) [2]. thus a similar tilting angle between the $\eta^{3} \cdot \mathrm{Cp}$ and

Table 3
Selected interatomic distances for I

Alom 1	Atom 2	Distance (${ }^{(1)}$	Atom 1	Atom 2	Distance (${ }^{(1)}$
Ru(1)	(1)	$2.756(3)$	Ru(1)	Ru(2)	$5.273(3)$
(2)	(3)	2.914(3)	1(3)	(1)	2.944(3)
Ru(1)	(c1)	2.17(3)	Ru(1)	C(2)	$2.21(3)$
Ru(1)	C(3)	2.21(3)	Ru(1)	C(4)	2.19(3)
Ru(1)	C(5)	$2.18(3)$	Ru(1)	C(6)	2.28(2)
Ru(1)	(17)	2.21 (2)	Ru(1)	C(8)	$2.18(2)$
Ru(1)	(19)	$2.18(3)$	Ru(1)	C(10)	2.25(2)
$\mathrm{Ru}(2)$	C(II)	$2.11(2)$	Ru(2)	C(12)	2.09(2)
Ru(2)	C(13)	2.11 (2)	Ru(2)	C(14)	$2.14(2)$
Ruf(2)	C(15)	$2.12(2)$	$R u(2)$	C(16)	2.10(2)
Ru(2)	C(17)	$2.13(2)$	$\mathrm{Ru}(2)$	C(18)	$2.11(2)$
Ru(2)	C(19)	$2.11(2)$	Ru(2)	C(20)	2.11(2)
C(1)	(13)	1.40(5)	(1)	(45)	$1.35(5)$
(12)	(3)	1.35(5)	C(3)	(4)	1.28(5)
(C4)	(15)	1.50(5)	(16)	(17)	1.45(3)
C(6)	C(10)	1.39(3)	(17)	C(8)	1.44(3)
CY8)	(cy)	1.38(3)	C(9)	C(10)	1.36(3)
C(6)	(111)	1.45(3)	C(II)	C(12)	1.42(3)
(111)	C(15)	1.46(3)	C(12)	C(13)	$1.38(3)$
C(13)	C(14)	1.43(3)	C(14)	C(15)	1.43(3)
C(16)	C(17)	1.37(4)	C(16)	C(20)	1.49(4)
C(17)	C(18)	$1.38(4)$	C(18)	C(19)	1.35(3)
C(19)	C(30)	1.39(4)			

Table 4
Selected bond lengths (\AA) and angles (deg) for $1-4$

	1	2	3	4
$\bar{M}^{\text {IIa }} \cdots \mathrm{Ru}^{\text {IV }}$	5.273(3)	5.464(4)	5.219(2)	5.324(6)
$\mathrm{M}^{\prime \prime}$-Cp ${ }^{\text {b }}$	$1.740(3)$	1.812(3)	1.649(9)	1.649(19)
$R u^{\prime \prime}-C p{ }^{\text {c }}$	1.861(6)	1.879(7)	$1.864(9)$	$1.840(28)$
$M^{\text {II }}-\mathrm{C}_{\text {ring }}(\mathrm{av}$)	2.11 (1)	2.18 (1)	$2.03(6)$	2.03 (6)
$\mathrm{Ru}^{\text {IV }}-\mathrm{C}_{\text {ring }}$ (av)	2.21 (4)	2.22(2)	2.21 (9)	2.21(9)
$\mathbf{R u}{ }^{\text {IV }}$-I	2.756 (2)	$2.717(2)$	2.731(2)	2.746(1)
$\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}(\mathrm{Fe})$	1.41(3)	1.40(6)	1.41(4)	1.42(1)
$\mathrm{C}_{\text {ring }} \mathrm{w}^{\text {cing }}$ (Ru)	1.39(3)	1.37(9)	1.42(5)	1.42(3)
Dihedral angle				
$\mathrm{Cp}-\mathrm{Ru}^{\text {IV }}-\mathrm{C}_{5} \mathrm{H}_{4}$	31.08	42.40	32.73	39.21

${ }^{3} \mathrm{M}=\mathrm{Ru}$ for 1,2 and Fe for 3, 4.
${ }^{\text {b }} \mathrm{Fe}-\mathrm{Cp}$; the distance between the Fe and $\eta^{5}-\mathrm{Cp}$ and $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings.
${ }^{c} \mathrm{Ru}=\mathrm{Cp}$; the distance between the Ru and $\eta^{5}-\mathrm{Cp}$ and $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings.
$\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ planes of the $\mathrm{Ru}^{\mathrm{IV}}$ side will be expected; actually the value is found to be 31.08° (32.2° for the $[\mathrm{RcHI}]^{+}$cation). Therefore, the larger tilting angle between the rings (42.4°) found in cation 2 is verified by the steric hindrance between the I and two C_{1} atoms $(C(6)$ and $C(11))$, and as a result the non-planarity of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ plane is observed in cation 2.

The structure of the Re moiety of 1 is similar to that of 2; i.e. the $\eta^{5}-\mathrm{Cp}$ and $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings are nearly parallel (tilting angle 1.44°) and the mean interplane $\mathrm{C}_{\text {rime }} \cdots \mathrm{C}_{\text {ring }}$ distance of the Rc moiety is $3.41(9) \AA$. As shown in Fig. 2 (upper part), the $\eta^{5}-\mathrm{Cp}$ and $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ rings of the Re moiety are essentially eclipsed, as in the case of RcH and the $[\mathrm{RcHII}]^{+}$cation (rotation angle $\left.1.2(9)^{\circ}\right)$, while the two tilting rings on the Ru ${ }^{\text {IV }}$ side are in a nearly intermediate eclipsed and stagered state (rotation angle ca. $\left.20(2)^{\circ}\right)$, as with 2.

A stereo view of the packing down the c axis of 1 is shown in Fig. 3. The unit has an asymmetric I_{1}^{*} amion $(I(2)-I(3)-I(4)$; distances $I(2)-I(3)$ and $I(3)-I(4)$ $2.914(3)$ and $2.944(3) \AA$ respectively: $I(2)-I(3)-J(4)$ angle $178.0(1)^{\circ}$ i.e. the anion is $\mathrm{I}_{2}-\mathrm{I}^{-}$in character). The
shortest intermolecular $I(1) \cdots I(2)$ and $I(1) \cdots I(3)$ distances are $3.904(3)$ and $4.188(2) \AA$ respectively; these values are less than the value ($4.30 \AA$) of the van der Waals radii of two I atoms [9]; i.e. I(1) is in contact with I_{3}^{-}. However, an absence of contact between I_{3}^{-} anions is found (the shortest intermolecular $\mathrm{I}_{3}^{-1} \mathrm{I}_{3}^{-\prime}$ distance (4.622(4) \AA) is much longer than the sum of the van der Waals radii of two I atoms [9]).

The characteristic feature of the packing is found in the position of the I_{3}^{-}; i.e. the I_{3}^{-}sits perpendicularly above the $\mathrm{C}_{5} \mathrm{H}_{4}$ plane ($\mathrm{C}(11-15)$) of the Re moiety. Fig. 4 gives a space filling plot, showing the contact between the I_{3}^{-}and cation 1. Although the I(2)* $\cdots \mathrm{C}(13)^{*}(4.26(2)), 1(2)^{\circ} \cdots \mathrm{C}(14)^{*}(4.03(2))$ and I(2)* $\cdots \mathrm{C}(15)^{\circ}(4.21(2) \AA)$ distances are longer than the sum of the van der Waals radii of I and C atoms $(3.85 \AA)[9]$, this packing decides the structure of the cation 1; i.e. avoiding steric hindrance between I(1) and the bulky I_{3}^{-}, the direction of the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{I}^{-}$bond is fixed as the trans position to the Re moiety when the salt 1 is crystallized. The absence of BF_{4}^{-}on the Ru" side of the $\mathrm{C}_{5} \mathrm{H}_{4}$ plane and a demand for close packing between

Table 5
Dihedral angles between planes (deg)

Plane	C(6)-C(10)	C(11)-C(15)	$\mathrm{C}(16)-\mathrm{C}(20)$
Compound 1			
C(1-5)	31.08	17.02	15.75
C(6-10)	-	14.06	15.36
C(11-15)	-	-	1.44
Compround 3 (32.73			
C(1)-C(5)	32.73	18.48	16.93
C(6) C(10)	-	14.25	15.87
$\mathrm{C}(11)-\mathrm{C}(15)$	-	-	2.01
Compound 4			
C(1)-C(5)	39.21	46.08	
C(6)-C(10)	-	21.32	17.81
C(11)-C(15)	-	-	4.52

Fig, 2. ortte drawing of cation 1 with themal ellipsoids at the 40% probability leveli pergpective view with atomic numbering scheme (botom), progretion of a whole molecule onto the Cp plane (top).
the cation and anion, mems that the ditection of the $\mathrm{Ru}^{\mathrm{IV}} \mathrm{I}^{-}$bond is fixed as the cis position to the Re moiety for 2, as shown in Pig. 1. These structural

Fig. 4. Space filling plot showing the contact between I_{3}^{-}and the cation 1.
differences, caused by the counter ions, are also reflected in the results of solid state NMR.

Fig. 5 shows ${ }^{13} \mathrm{C}$ CP/MAS NMR spectra of (a) 1 and (b) 2. Two sharp signals are observed for both the salts. For 1, the lower field ${ }^{13} \mathrm{C}$ signal at $\delta 93.5$ is ascribed to the Cp - and $\mathrm{C}_{5} \mathrm{H}_{4}$-ring ($\mathrm{C}_{2,5}$ positions) of the $\mathrm{Ru}^{\mathrm{IV}}$ side, and at $\delta 78.0$ to those of the Ru " side. The reason for the smaller peak intensity of the Ru ${ }^{\text {IV }}$ side compared with that of the Ru" side is explained by the overlapping of the other $\mathrm{C}_{5} \mathrm{H}_{4}$-ring signal ($\mathrm{C}_{3,4}$ positions) of the Ru'v side to the Ru" signal on the basis of "C NMR spectroscopy in solution [4]. All atempls to fird the C_{1} signals of the Rut and Ru't

Fig. 3. Projection of the unit cell of 1 along the c axis.

Fig. 5. ${ }^{17} \mathrm{C} \mathrm{CP} / \mathrm{MAS}$ NMR spectra of (a) 1 and (b) 2 .
sides have been unsuccessful because of their poor intensities. For 2, ring carbon signals of the $\mathrm{Ru}^{\text {II }}$ side are observed at $\delta 77.7$, those of the $\mathrm{Ru}^{\mathrm{IV}}$ side at $\delta 88.7$, which is a higher field shift (ca. $\Delta \delta=4.8$) compared with the value of 1 because of the structure difference between them. I is in van der Waals contact with the $\mathrm{C}_{5} \mathrm{H}_{4}$-ring of the Ru^{11} side for 2, thus the higher positive charge of $\mathrm{Ru}^{\mathrm{IV}}$ may be delocalized over $\mathrm{Ru}^{\mathrm{IV}}$ I $\cdots \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CpRu}^{\text {II }}$, resulting in the higher field shift observed in the $\left[\operatorname{IRu}{ }^{\mathrm{IV}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$moiety. In contrast, the absence of such contact in 1 gives no higher field shift of the $\mathrm{Ru}^{\mathrm{IV}}$ side.

As described in the Introduction, these counter anion effects are observed only in the solid state. From results of ${ }^{1} \mathrm{H}$ NMR spectroscopy of 1 in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$, the absence of the counter anion effect was observed [10]; i.e. 1 gives six sharp signals in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ at $183 \mathrm{~K} ; \delta$ $6.41(2 \mathrm{H}), 6.05(5 \mathrm{H}), 5.76(2 \mathrm{H}), 5.33(2 \mathrm{H}), 5.19(2 \mathrm{H})$ and $4.61(5 \mathrm{H})$. The former three signals are assigned as ring protons of the $\left[\mathrm{IRu}^{\mathrm{IV}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$moiety, and the latter three signals as the $\mathrm{Ru}^{\prime \prime} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ moiety. The same δ values are observed for the analogous $\mathrm{BF}_{4}^{-} 2$ and PF_{6}^{-}salts, implying no interaction between the anion and the cation in solution. Avoiding steric hindrance between the I and two C_{1} atoms in the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ ligand in solution, the direction of the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{I}$ bond may be fixed as the trans position to the Re moiety in acetone, as for 1 in solid. In order to estimate the central metal positive charge, ${ }^{57} \mathrm{Fe}$.

Table 6
Atomic coordinatey and isoropic temperature factors for 3

Alom	x	y	8	$\theta_{\text {eq }}{ }^{\text {a }}$ (\AA^{2})
(1)	$0.0858(1)$	-0.21513(5)	-0.1572(1)	5.1
12)	$=0.0073(1)$	0.05501(5)	$0.1875(1)$	5.5
1(3)	$0.2397(1)$	$0.10960 \times 4)$	$0.1952(1)$	4.0
(14)	0.4862(1)	$0.16975(6)$	$0.2046(1)$	6.1
Ru	-0.015s(1)	$=0.32093(4)$	-0.1617(1)	2.3
Fe	-0.4471(2)	-0.44110(7)	$=0.2325(2)$	2.1
C(1)	$0.061(2)$	$-0.4049(7)$	-0.131(3)	5.4
C(2)	0.058(2)	$-0.3906(9)$	-0.264(2)	6.6
C(3)	$0.146(2)$	-0.3426(9)	-0.095(3)	5.8
C(5)	$0.152(2)$	-0.3734(9)	-0.025(2)	5.6
C(6)	-0.217(1)	-0.3642(5)	-0.186(1)	2.1
C(7)	-0.237(1)	-0.3226(6)	-0.296(1)	2.9
C8)	-0.202(1)	-0.2698(5)	-0.227(2)	3.3
C(9)	-0.154(1)	-0.2785(5)	-0.078(1)	2.6
C(10)	-0.162(1)	$-0.3352(6)$	-0.051(1)	3.0
C(11)	-0.257(1)	-0.4220(5)	-0.210(1)	2.3
C(12)	-0.321(1)	$-0.4483(5)$	-0.345(1)	2.6
C(13)	-0.363(1)	-0.5023(5)	-0.320(2)	3.0
C(14)	-0.322(1)	-0.5092(6)	-0.170(1)	3.0
C(15)	-0.256(1)	-0.4601(5)	$-0.098(1)$	2.3
C(16)	$=0.542(1)$	-0.3685(6)	-0.218(2)	4.2
C(17)	-0.610(1)	-0.3934(8)	-0.349(2)	4.7
C(18)	-0.654(1)	-0.4460(7)	-0.325(1)	3.3
C(19)	$-0.611(1)$	-0.4537(6)	-0.176(2)	3.7
C(20)	$-0.544(1)$	-0.4050(7)	-0.108(2)	3.9

[^0]Mössbauer spectroscopy and X-ray diffraction studies were carried out using salts 3-5.

3.2. Salts 3-5

The results of X-ray studies of $\mathbf{3}$ are discussed first. Tables 6 and 7 show the final atomic coordinates and equivalent isotropic temperature factors $B_{\text {eq }}$ of non-hydrogen atoms and selected bond lengths for 3 respectively. Fig. 6 is a ORTEP drawing of the cation 3. The structure of the cation is similar to that of 1; i.e. the direction of the $\mathrm{Ru}-\mathrm{I}$ bond is trans to the Fc moiety. The $\mathrm{Ru}=\mathrm{I}, \mathrm{Fe} \cdots \mathrm{Ru}$ and $\mathrm{Fe} \cdots \mathrm{I}$ distances are found to be $2.731(2), 5.219(2)$ and $7.492(2) \AA$ respectively. These values correspond well with the values for 1 (2.756(2), 5.273(3) and 7.697(3) \AA respectively). The $\mathrm{I}-\mathrm{Ru} \cdots \mathrm{Fe}$ angle $\left(138.7^{\circ}\right)$ is 6.5° smaller than that for 1.

The mean $\mathrm{Ru}-\mathrm{Cp}$ and $\mathrm{Ru}-\mathrm{C}_{\text {ring }}, \mathrm{Fe}-\mathrm{Cp}$ and $\mathrm{Fe}-\mathrm{C}_{\text {ring }}$ distances are $1.864(9)$ and $2.21(9), 1.649(9)$ and $2.03(6)$ \AA respectively. The former two values are closer to the values for the $\left[\mathrm{IRu}^{1 /} \mathrm{Cp}\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)\right]^{+}$moiety of $\mathbf{1}$, and the latter two values to those for ferrocene (1.65 and 2.045 A) [11]. Thus the oxidation states of Ru and Fe are assigned formally as $\mathrm{Ru}^{\mathrm{iV}}$ and Fe il ; i.e, the formula of the cation is given as $\left[\mathrm{Fe}^{17} \mathrm{Cp}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{C}_{3} \mathrm{H}_{4}\right) \mathrm{CpRu}^{1 \mathrm{~V}} \mathrm{I}\right]^{+}$. as already verified using ${ }^{37} \mathrm{Fe}$-Mössbauer spectroscopy [12]. The tilting angle between the Cp and $\mathrm{C}_{3} \mathrm{H}_{4}$ planes on the Re moiety is 32.73° (2.01° for the Fe moiety). this is slightly larger than the value for 1 . As in the case of 1 . the Cp and $\mathrm{C}_{3} \mathrm{H}_{4}$ planes of the Fe moiety are eclipsed (the rotation angle between them is ca. $\left.1(1)^{9}\right)$.

Fig. 6. orter drawing of cation 3 with thermal ellipsoids at the 40 \% probability level: perspective view with atomic numbering scheme (botom), projection of a whole molecule onto the Cp plane (top).

These two planes of the Re moisty are in an intermediate eclipsed and stagered state (the rotation angle between them is ca, $\left.19(2)^{\circ}\right)$. The packing of the cation

Table 7
Selected interatomic distancer for 3

Alom I	Atom 2	Distance (A)	Atom 1	Atom 2	Distance (${ }^{\text {a }}$)
Ru	(1 I)	$2.731(2)$	Ru	Fe	$5.219(2)$
$1(2)$	1(3)	2,894(2)	(13)	I(4)	$2.946(2)$
Ru	(1)	2.14(2)	Ru	C(2)	$2.21(2)$
Ru	C(3)	2.18(1)	Ru	C(4)	2.21(2)
Ru	C(5)	$2.19(1)$	Ru	C(6)	2.30(1)
Rug	C(7)	$2.24(1)$	Ru	C(8)	2.21 (1)
Ru	C(9)	$2.17(1)$	Ru	C(10)	$2.22(1)$
Fe	C(II)	2.00011	Fe	(112)	$2.03(1)$
Pe	C(13)	$2.05(1)$	Fe	C(14)	2.04(1)
Fe	C(15)	$2.04(1)$	Fe	C(16)	$2.03(1)$
$\mathrm{Fe}_{\mathrm{Fe}}$	C(17)	$2.04(1)$	Fe	C(18)	$2.05(1)$
$\stackrel{\mathrm{Fe}}{\mathrm{Cl}}$	C(19)	$2.03(1)$	Fc	C(20)	$2.05(1)$
(1)	(2)	1.35(3)	C(1)	(5)	1.37(2)
(C2)	C(3)	1.32(3)	(3)	(4)	1.37(3)
(14)	C(5)	1.3312)	(16)	C(7)	1.43(2)
C(6)	C(10)	1.43(3)	C(7)	C(8)	1.41(2)
C(8)	C(1)	1.40(3)	C(9)	C(10)	$1.38(2)$
C(1) (11)	C(11)	$1.43(2)$ $1.43(2)$	C(11)	$\mathrm{C}(12)$	1.42(2)
(413)	C(14)	$1.43(2)$ $1.41(2)$	C(12)	C(13)	$1.41(2)$
C(16)	C(17)	$1.41(2)$ $1.38(2)$	C(16)	C(15) $\mathrm{C}(20)$	$1.42(2)$ $1.40(2)$
C(17)	C(18)	1.38(2)	C(18)	C(19)	1.400 $1.39(2)$
(19)	C(20)	1.40(2)			1.39)

Fig. 7. ORTEP drawing of cation 4 with themal ellipsoids at the 40% probability level: perspective view with atomic numbering scheme (bottom), projection of a whole molecule onto the Cp plane (top).
and I_{3}^{-}is the same ass with 1 ; i.e. the I_{3}^{-}sits on the $\mathrm{C}_{5} \mathrm{H}_{4}$ plane ($\mathrm{C}(11-15)$) of the Fc moiety (the shortest $\mathrm{I}(2)$ to C atoms distance is $3.94(1) \AA$ ($(2)^{*}$ $\left.\cdots \mathrm{C}(13)^{*}\right)$). All the crystal data of $\mathbf{3}$ indicate that its crystal structure is homologous to that of 1 .

In contrast, the crystal data of $\mathbf{4}$ is different from that of 2; e.g. the space groups of 2 and 4 are $P 2_{1} / n$ and $P 2,2,2$, respectively and the cell parameters of $2(a=$ 25.078(12), $b=10.599(12), \quad c=7.652(8) \AA, \quad \beta=$ $\left.95.17(8)^{\circ}\right)$ are different from those of $4(a=9.871(10)$,

Table 8
Alomic coordinates and isoropic temperature factors for 4

Alom	x	y	$:$	$B_{\text {cq }}{ }^{4}\left(A^{2}\right)$
1	$0.0839(4)$	0.1433(1)	$0.1722(3)$	4.5
Ru'	0.2074(4)	(0.1821(1)	-0.1157(4)	2.9
Fe	-0.00419	O.(M)10(3)	-0.3160(7)	2.8
F(1)	$0.504(5)$	$0.18373)$	0.472(6)	14.7
Fi(2)	$0.676(5)$	0.151(1)	$0.359(4)$	11.2
F(3)	$0.613(4)$	$0.135(1)$	$0.630(4)$	10.3
$f(4)$	$0.692(6)$	0.210(1)	$0.556(5)$	11.2
C(1)	$0.376(6)$	0.202(2)	$0.067(6)$	6.2
C(2)	$0.278(8)$	0.242 (1)	$0.072(6)$	7.4
C(3)	$0.25517)$	0.263(2)	-0.080(6)	6.6
C(4)	$0.373(5)$	0.235(3)	-0.166(8)	11.6
C(5)	0.415(5)	$0.192(2)$	-0.093(7)	13.5
C(6)	$0.118(4)$	$0.104(1)$	-0.243(4)	2.3
C(7)	0.224(4)	$0.128(2)$	-0.333(5)	4.7
C(8)	0.185(5)	0.178(2)	-0.388(4)	12.7
C(9)	$0.048(6)$	$0.188(2)$	-0.309(6)	5.8
C(10)	$0.006(5)$	$0.14612)$	-0.220(5)	5.4
C(11)	$0.111(4)$	0.052(2)	-0.187(4)	4.7
C(12)	$0.005(4)$	$0.031(2)$	-0.078(4)	2.8
C(13)	$0.025(6)$	-0.025(2)	-0.069(5)	5.6
C(14)	$0.141(4)$	-0.037(2)	-0.183(5)	4.2
C(15)	$0.188(4)$	$0.010(2)$	-0.239(5)	3.3
C(16)	-0.125(5)	$0.038(2)$	-0.497(6)	5.2
C(17)	$-0.182(6)$	$0.011(3)$	-0.390(7)	8.2
C(18)	-0.196(7)	-0.023(4)	-0.398(5)	12.3
C(19)	-0.094(9)	-0.053(3)	-0.498(9)	20.3
C(20)	-0.027(4)	-0.001(4)	-0.568(7)	11.3
B	$0.621(5)$	$0.171(2)$	$0.514(5)$	3.4

$b=25.581(10), c=7.810(3) \AA$). Fig. 7 shows an ORTEP drawing of the cation of 4 formulated as $\left[\mathrm{Fe}^{\mathrm{II}} \mathrm{Cp}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{1 \mathrm{~V}} \mathrm{I}\right]^{+}$. The distance between Fe^{11} and $\mathrm{Ru}^{1 \mathrm{~V}}$ is $5.324(6) \AA$, which is ca. $0.14 \AA$ smaller than the value for 2, as shown in Table 9. The mean $\mathrm{Fe}-\mathrm{C}_{\text {ring }}$ (1.649(19)), $\mathrm{Fe}-\mathrm{Cp}$ (2.03(6)), $\mathrm{Ru}-\mathrm{C}_{\text {ring }}$ ($1.840(28)$) and $\mathrm{Ru}-\mathrm{Cp}$ (2.21(9) \AA) distances agree with the corresponding values for 3 . The most interesting structural feature of the cation is the direction of the $\mathrm{Ru}-\mathrm{I}$ bond to the $\mathrm{C}_{5} \mathrm{H}_{4}$ plane of the Fc moiety; I is cooruinated to Ru from the oblique side of the Fc moiety. The torsion angle I-Ru-C(6)-C(11) is $43.0(1)^{\circ}$, while the angle for 3 is small ($9(1)^{\circ}$; the same value is found for 1). The I $\cdots \mathrm{C}(6)$ distance (3.386(1) \AA) is longer than the value for $2(3.188(8) \AA$), suggesting less steric hindrance between I and C(6). The smaller tilting angle (39.21°) between the Cp and $\mathrm{C}_{5} \mathrm{H}_{4}$ rings of the $\mathrm{Ru}^{\text {iV }}$ side, and the lesser non-planarity of the $\mathrm{C}_{5} \mathrm{H}_{4}$ plane of the $\mathrm{Ru}^{\text {IV }}$ side compared with those of $\mathbf{2}$, are explained by the same reason.

Fig. 8 shows ${ }^{13} \mathrm{C} C P /$ MAS NMR spectra of (a) 3 and (b) 4. For 3, two broad main ${ }^{13} \mathrm{C}$ peaks ($\delta=93.1$ and 75.8) are observed. On the basis of previous studies, the signal at lower field is ascribed to the $C p$ and $\mathrm{C}_{2.5}$ of the $\left[\mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Ru}{ }^{\text {IV }} \mathrm{I}\right]^{+}$moiety, and the signal at higher field to the $\mathrm{Cp}\left(\mathrm{C}_{3} \mathrm{H}_{4}\right) \mathrm{Fe}^{11}$ moiety. The much larger peak intensity of the latter is explained by the same reason described for 1 and 2. For 4, three broad main signals ($8=89.4,75,9$ and 73.1) are observed; the lower field signal $(8=89.4)$ is ascribed to the Cp and C_{23} of the $\left[\mathrm{Ru}^{12} \mathrm{Cp}^{2}\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)\right]^{*}$ moiety, the higher signal

Fig. . . ${ }^{\prime \prime} \mathrm{CCP} / \mathrm{MAS}$ NMR spectra of (a) 3. (b) 4 and (c) 5.

Table 9
Selected interatomic distances for 4

Atom 1	Aton 2	Distance (A)	Atom 1	Atom 2	Distance (\AA)
Ru	(1)	$2.745(4)$	Ru	Fe	$5.324(6)$
B	F(1)	1.24(6)	B	$F(2)$	1.40(5)
B	F(3)	1.29(5)	B	$F(4)$	1.26(6)
Ru	C(1)	2.24(5)	Ru	C(2)	2.22(4)
Ru	C(3)	2.13 (5)	Ru	(1)	$2.15(5)$
Ru	C(5)	2.09(5)	Ru	C(6)	$2.41(3)$
Ru	C7)	2.23(4)	Ru	C(8)	2.142)
Ru	C(9)	$2.33(5)$	Ru	C(10)	2,36(4)
Fe	C(11)	2.00(4)	Fe	C(12)	$2.03(3)$
Fe	C(13)	2.07(4)	Fe	C(14)	2.03(4)
Fe	C(15)	$2.000(4)$	Fe	C(16)	2.08(4)
Fe	C(17)	$1.9688)$	Fe	C(18)	$2.04(5)$
$\stackrel{\mathrm{Fe}}{\mathrm{Cl}}$	C(19)	$2.12(6)$	Fe	(20)	$1.98(5)$
C(1)	C(2)	$1.42(8)$ $1.32(5)$	C(1)	(\%)	$1.38(3)$
(C8)	(13)	$1.32(5)$ $1.35(8)$	C(3)	C(4)	1.45(9)
C(6)	C(10)	$1.3518)$ $1.44(9)$	C(6)	C(7) (8)	1.42(5)
C(8)	C(9)	1.49(8)	C(9)	C(10)	$1.44(7)$ $1.38(7)$
C(6)	C(11)	$1.37(5)$	C(11)	C(12)	$1.49(5)$
C(11)	C(15)	1,37(5)	C(12)	(13)	1.46(6)
C(13) C(16)	C(14)	1,48(6)	C(14)	C(15)	$1.35(6)$
C(10) C(17)	C(17)	$1.3667)$	$\mathrm{C} 16)$	C(20)	1.43 (8)
C(17) C(19)	C(18)	1.34(7)	C(18)	C(19)	$1.39(7)$
C(19)	C(20)	1.40(5)			

($\delta=73.1$) to the Cp and $\mathrm{C}_{3,4}$ of the Fc moiety, and the signal $(\delta=75.9)$ to the $C_{3.4}$ (Ru side) and $C_{2,5}$ (Fe side). The higher field shift ($\Delta \delta \mathrm{ca} .4 \mathrm{ppm}$) is also observed for the $\left[\mathrm{IRu}^{1 V} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$moiety in 4 owing to the same reason described previously for 2 compared with 1.

Fig. 9 shows ${ }^{57} \mathrm{Fe}$-Mössbauer spectra of (a) 4 and (b) the related PF_{6} salt 5 at the indicated temperatures. Although no temperature dependence was observed for 3 (IS 0.52 , QS $2.16 \mathrm{~mm} \mathrm{~s}^{-1}$ at 78 K ; IS 0.43 , QS 2.16 $\mathrm{mm} \mathrm{s}{ }^{-1}$ at 300 K), significant temperature dependence is observed for 4 ; i.e. the two types of Fe atom are observed at 300 K . One is a large portion of a fer-rocene-like component (IS $0.43, \mathrm{QS} 2.05$) and the other is a small portion of a ferrocenium-like one (IS 0.43). At decreasing temperatures, the intensity of the $\mathrm{Fe}^{\mathrm{III}}$ component decreases and only the $\mathrm{Fe}^{\text {II }}$ component (IS 0.51 , QS $2.20 \mathrm{~mm} \mathrm{~s}^{-1}$) remains at 78 K . Such temperature dependence of the ${ }^{57} \mathrm{Fe}$-Mössbauer spectra is observed remarkably for 5 , with the ${ }^{57} \mathrm{Fe}$-Mössbauer spectrum at 78 K showing a ferrocene-like doublet (QS 2.13, IS $0.50 \mathrm{~mm} \mathrm{~s}^{-1}$) accompanied by a broad singlet of ferrocenium character (IS $0.45 \mathrm{~mm} \mathrm{~s}{ }^{-1}$). The areal intensity ratio (Fe (III) $/(\mathrm{Fe}$ (II) +Fe (III)) κ is ca. 0.14 . With increasing temperature, a decreasing ferrocene-like line (QS 1.97, IS $0.44 \mathrm{~mm} \mathrm{~s}^{-1}$) and increasing ferroce-
nium-like line (QS 0.37 , IS $0.42 \mathrm{~mm} \mathrm{~s}^{-1}$) are observed, the κ value is found to be ca. 0.46 (for 4 the κ value is ca. 0.20 at 300 K); i.e. the oxidation state of the Fe atom in 5 is closer to that of ferrocenium compared with the case of 3 (Fe^{11}) and 4. This result corresponds weli with that of the ${ }^{13} \mathrm{C}$ CP/MAS NMR spectra. Because of the paramagnetic ferrocenium species, three broader ${ }^{13} \mathrm{C}$ CP/MAS NMR signals ($\delta=88.8,74.4$ and 78.6) were found for 5, as shown in Fig. 8(c). The lower field signal ($\delta=88.8$) is ascribed to the Cp and $\mathrm{C}_{2.5}$ ring carbons of the $\left[\mathrm{IRu}^{\mathrm{IV}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$moiety and the other two signals to the Rc and $\mathrm{C}_{3,4}$ ring carbons of the $\left[\mathrm{IRu}^{\mathrm{IV}} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$moiety.

Although X-ray diffraction studies of 5 have been carried out, the final $R(0.12)$ and standard deviation values are too large to describe because of a lack of success in preparing single crystals of suitable size and the larger thermal motion of PF_{6}^{-}. However, it is still useful to discuss the structure of 5 in comparison with that of 4. The crystal form of 5 is $P 4_{1}, a=10.72(1)$, $c=18.60(2) \AA, V=2137 \AA^{3}$ and $Z=4$. The conformation of the cation is quite similar to that of 2 ; the $\mathrm{Ru}-\mathrm{I}$ bond ($2.741(6) \AA$) sits just above the $\mathrm{C}_{5} \mathrm{H}_{4}$ plane of the Fc moiety, unlike the case of 4 . The torsion angle $\mathrm{I}-\mathrm{Ru}-\mathrm{C}(6)-\mathrm{C}(11)$ is negligible. The I $\cdots \mathrm{C}(6)$ distance ($3.286(6) \AA$) is much smaller (ca. $0.3 \AA$) than the value

Fig. 9. ${ }^{57} \mathrm{Fe}$-Mössbauer spectra of (a) 4 and (b) 5 at the indicated temperatures.

Fig. 10. Space filling plot showing the difference in structure of cations 4 (a) and 5 (b).
for 4; i.e. the coordinated I atom sits closer to the $\mathrm{C}_{5} \mathrm{H}_{4}$ plane of the Fc moiety (van der Waals contact), as shown in $\mathrm{Fig}, 10 \mathrm{bb}$), unlike the case of 3 and 4. That conformational change may be deeply concerned with the results of ${ }^{37} \mathrm{Fe}$-Müssbauer spectra for $3-5$.

For the last two decays, ${ }^{34} \mathrm{Fe}$-Mössbauer spectroscopic and X-ray studies have been reported on the mixed=valence $I^{\prime}, I^{\prime \prime \prime}=$ dialkylbiterrocenium and $I^{\prime}, I^{\prime \prime \prime}$ odihalobiferrocenium salts [13-17]. Results of the ${ }^{57} \mathrm{Fe}=$ Müssbauer spectroscopy of 1^{\prime}. $1^{\prime \prime \prime}$-diethylbiferrocenium ${ }^{*} I_{3}^{-}$and biferrocenium ${ }^{+} I_{3}$ indicate the presence of significunt interation between the Cp_{p} or $\mathrm{C}_{3} \mathrm{H}_{4}$ planes and I_{3} (van der Waals contact between the Cpring and I atom), which is the driving force for the temperature dependence of the Mössbauer spectra. Moreover, Konno et al. [15] concluded that the van der Waals contact between the halogen atoms ($\mathrm{X}=\mathrm{I} . \mathrm{Br}$) and the other $\mathrm{C}_{3} \mathrm{H}_{4}$ plane of the fulvalene moiety is the driving force for the averuged valence state of the mixed-valence $1^{1}, l^{\prime \prime \prime}$-ditiodo- and $1^{\prime}, l^{\prime \prime \prime}$-dibromobiferrocenium salts, even at low temperature (4.2 K) [15]. Considering these reported facts and the results of the present studies, it seems reasonable to conclude that the positive charge of $\mathrm{Ru}^{\mathrm{NV}}$ is delocalized over $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{Ru}^{\mathrm{NN}}-$ $1^{-} \cdots \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Fe}^{11}$ through the overiap between I^{-}and the $\mathrm{C}_{3} \mathrm{H}_{4}$ plane, giving a larger portion of ferrocenium-like species for 5 at 300 K compared with 4. With the absence of such an interaction, 3 gives ferrocene-like ${ }^{57} \mathrm{Fe}$-Mössbauer spectra alt all temperatures.

Like the case of $\mathbf{1}$ and 2. the absence of a counter anion effect is observed in acetone with 'H NMR spectroscopy: i.e. six sharp signals ($\delta 6.58(2 \mathrm{H}), 5.97$
(2 H). $6.10(5 \mathrm{H}), 5.05(2 \mathrm{H}), 5.13(2 \mathrm{H})$ and $4.29(5 \mathrm{H})$) are observed at 183 K for 3 . The former three signals are assigned as ring protons of $\left[\mathrm{IRu}^{1 /} \mathrm{Cp}^{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$and the latter three signals as the $\mathrm{Fe}^{1 "} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ moiety. Six quite similar signals were observed for 4 and 5 under the same conditions [18], implying that the direction of the $\mathrm{Ru}^{\mathrm{lv}}-\mathrm{I}$ bond is fixest as the trans position to the Fc moiety in solution.

From the results of the present study, it can be found that the structure of the cations $\mathbf{1 - 5}$ formulated as [$\mathrm{M}^{11} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{CpRu}^{1 \mathrm{IV}} \mathrm{II}^{+}$is dependent on the counter anion effect ($\mathrm{I}_{3}^{-}, \mathrm{BF}_{4}^{-}$and PF_{6}^{-}). The direction of the $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{I}$ bond is fixed as the trans position to the $\mathrm{M}^{\mathrm{II}} \mathrm{Cp}_{\mathrm{P}}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ moiety for I_{3}^{-}salt ($\mathbf{1}, \mathbf{3}$) avoiding steric hindrance between the bulky I_{3}^{-}and the $\mathrm{Ru}^{\mathrm{N}}-\mathrm{I}$ bond. In the case of $\mathrm{BF}_{4}^{--}(2,4)$ and PF_{6}^{-}(5) salts, the $\mathrm{Ru}^{\mathrm{IV}}-1$ bond is fixed as the cis position to the $\mathrm{M}^{\prime \prime} \mathrm{Cp}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ moiety, which gives the large tilted structure found in the $\left[\mathrm{Cp}_{(}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Ru}^{\mathrm{IV}} \mathrm{I}\right]^{+}$moiety and the non-planarity of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{H}_{4}$ plane caused by the van der Waals contact between I and the $\mathrm{C}_{5} \mathrm{H}_{4}$-ring of the $\mathrm{M}^{\mathrm{II}} \mathrm{CpC}_{5} \mathrm{H}_{4}$ moiety. This contact gives the delocalization of the higher positive $\left[\mathrm{IRu}^{1 V} \mathrm{CpC}_{5} \mathrm{H}_{4}\right]^{+}$charge to the $\mathrm{M}^{11} \mathrm{CpC}_{3} \mathrm{H}_{4}$ moiety based on the results of ${ }^{13} \mathrm{C}$ CP/MAS and ${ }^{57} \mathrm{Fe}$-Mössbauer spectroscopic studies.

References

[1] M. Watanabe, I. Motogatin, M. Slimion and T. Iwamoto. Imory. (hem. Ji (1994) 2518.
[2] Y,S. Sone. A.W. Schiluter, D.N. Hendrichsoll and II.B. Gray. Phors ("heth. $l_{2}{ }^{2}(1974) 301$.
[3] M. Watanabe, I. Motoyanta, T". Takayama, M. Shimoi and H. Suno. J. Orgamemer. Chem. 996 (1995) 87.
[4] M. Watanabe, 'T. Iwamoto, A. Kubo, S. Kawata, H. Simo and I. Motoyama, inerg. Chem., $3 /(1922) 177$.
[5] D.T. Cromer and J.T. Wiber, Imernational Table fior X-ray Crystedlegraphy, Vol. IV, Kynoch Press, Bimmingham. UK, 1974. Table 2.2 A.
[6] J.A. Ibers and W.C. Hamilton. Acta Cryanalloger., 17 (1964) 781.
[7] D.C. Creagh and W.J. McAuley. Intermaiomal Tuble for X-rey Cryvellegraphy, Vol. C. Kluwer Acudemic, Bosion, 1992, Table 4.2.6.8, pp. 219-222.
[8] REXAT: Crovtel Sermetere Anedruis Parkagc. Molecular Structure Corp. 1985.
[9] L. Pauling, The Nemere of the Chemicel Bemd. Comell University Press, ird edn.. 1960.
[10] M. Watanabe, T. Iwamoto and H. Sano, J. Orgonemet. Chem. 46 (1993) 177.
[11] P. Setler and J.D. Dunita. Aevu Crivithaser., B.35 (1079) 1068.
[12] M. Watanabe, Y. Masude, I. Motoyama and H. Sano, Bull. (hem. Stoc. Jph. 6/ (1988) 827.
[13] T.-Y. Dong, D.N. Hendrickson, K.. Iwai. M.J. Cohn. S.J. Geib. A.L. Rheingold. H. Sano, 1. Mctoyama and S. Nakashima, J. Am. Chem. Sace, 107 (198,5) 7916.
[14] T.-Y. Dong, D.N. Hendrickson, T.G. Pierpont and M.F. Moore, J. Am. Chem. Ser... 108 (1986) 963.
[15] M. Konno, S. Hyodo and S. lijima, Bull. Chem. Soe. Jph., 55 (1982) 2327; M. Konno and H. Sano, Bull. Chem. Soc: Jpn., 61 (1988) 1455.
[16] M.J. Cohn, T.-Y. Dong, D.N. Hendrickson, S.J, Geob and A.L. Rheingold, J. Chem. Soc., Chem. Commun., (1985) 1095.
[17] M.H. Morrison, Jr. and D.N. Hendrickson, Inorg. Chem., 14 (1975) 2331.
[18] M. Watanabe, T. Iwamoto, H. Sano and I. Motoyama, J. Organamet. Chem., 455 (1993) 197.

[^0]: ${ }^{2} B_{\mathrm{eq}}=4 / 3\left(B_{11} a^{2}+B_{22} b^{2}+B_{33} c^{2}+B_{13} a c \cos \beta\right) . B_{1 j} \mathrm{~s}$ are defined by $\exp \left[-\left(h^{2} B_{11}+k^{2} B_{22}+l^{2} B_{33}+2 k l B_{23}+2 h / B_{13}+2 h k B_{12}\right)\right]$.

