

Journal of Organometallic Chemistry 523 (1996) 153-165

Counter anion effect on molecular structures of some iodobiruthenocenium and iodoferrocenylruthenocenium salts

Masanobu Watanabe *, Izumi Motoyama, Toshio Takayama

Department of Chemistry, Faculty of Engineering, Kanagawa University, Rokkakubashi, Yokohama 221, Japan

Received 10 January 1996; in revised form 17 April 1996

Abstract

Oxidations of biruthenocene (RcRc) and ferrocenylruthenocene (FcRc) with an equivalent amount of iodine or iodoruthenocenium 'Y⁻ ([RcHI]⁺Y⁻), Y = BF₄⁻ and PF₆⁻) gave monocationic halometallocenium salts formulated as [M¹¹Cp(C₅H₄C₅H₄)CpRu^{1V}I]⁺Y⁻ (M = Ru, Y = I₃ 1, BF₄ 2; M = Fe, Y = I₃ 3, BF₄ 4, PF₆ 5). The crystal structures of 1, 3 and 4 were analyzed by single-crystal X-ray diffraction. The crystal of 1 is monoclinic, space group $P2_1/c$, a = 10.737(3), b = 23.957(3), c = 9.936(3) Å, $\beta = 110.96(2)^\circ$, Z = 4, final R = 0.084. The crystal of 3 is monoclinic, space group $P2_1/c$, a = 10.575(3), b = 23.811(6), c = 9.902(4) Å, $\beta = 110.85(3)^\circ$, Z = 4, final R = 0.049. The crystal of 4 is orthorhombic, space group $P2_12_12_1$, a = 9.871(10), b = 25.581(10), c = 7.810(3) Å, Z = 4, final R = 0.094. The most interesting structural difference between the I₃⁻ (1, 3) and other salts (2, 4, 5) is found in the direction of the Ru^{IV}-I bond with respect to the remaining half of the M^{II}Cp(C₅H₄) (M = Ru, Fe) moiety. Because one end of the I₃⁻ anion sits above the C₅H₄ plane of the M^{II}Cp(C₅H₄) moiety, the Ru^{IV}-I⁻¹ bond is fixed in the *trans* position to the M^{II}Cp(C₅H₄) moiety, avoiding steric hindrance between them when the I₃⁻ salts (1 and 3) are crystallized. In the case of the BF₄⁻⁻ and PF₆⁻⁻ salts, the Ru^{IV}-I⁻ bond sits in the *cis* position to the M^{II}Cp(C₅H₄) moiety, as shown in Scheme 1, and this conformation gives larger tilting angles between the two η^{5} -Cp and η^{5} -C₅H₄ on the Ru^{IV} side (e.g. tilting angles 42.40° and 39.21° for 2 and 4 respectively) than those of both I₃ salts (31.08° for 1, 32.73° for 3) due to the van der Waals contact between I and the C₅H₄ plane. Such large conformational differences between the salts 1, 3 and 2, 4, 5 were observed from the results of ¹³C CP/MAS NMR and ⁵⁷Fe-Mössbauer spectroscopic studies; i.e. large temperatur

Keywords: Ruthenium; Iron; Metallocenes

1. Introduction

Recently, the crystal structure of 2, formulated as $[Ru^{II}Cp(C_5H_4C_5H_4)CpRu^{IV}I]^+BF_4^-$ has been determined by the present authors using X-ray analysis [1]. Two interesting structural features are found in the cation. One is the larger tilted structure of the η^5 -Cp and η^5 -C₅H₄ planes in the $[(C_5H_4)CpRu^{IV}I]^+$ moiety. The tilting angle between them is 42.40°, which is much larger than that of iodoruthenocenium⁺I_5^- ([RcHI]^+I_4^-) salt (32.2°) [2]. The other is the non-planarity of the C₅H₄C₅H₄ plane (the dihedral angle between the two C₅H₄ planes is 19.35°). As shown in Fig. 1, the Ru^{IV}-I bond is fixed in the *cis* position to the other half of the

 $Ru^{II}Cp(C_5H_4)$ moiety, thus these structural features may be caused by steric hindrance between the I and two C_1 atoms (the I ··· C(6) (3.188(8) Å) and

* Corresponding author.

0022-328X/96/\$15.00 © 1996 Elsevier Science S.A. All rights reserved *PII* S0022-328X(96)06408-X Scheme 1.

Fig. 1. ORTEP drawing of cation 2.

 $I \cdots C(11)$ (3.253(9) Å) distances are much smaller than the sum of the van der Waals radii of C and I (3.85 Å)). To confirm this conclusion and widen our studies, the related salts 1 and 3-5 were prepared and their ¹³C CP/MAS NMR and ⁵⁷Fe-Mössbauer spectroscopies carried out. The results of the measurements indicated the presence of structural differences between them; e.g. although 3 gives ferrocene-like ³⁷Fe-Mössbauer spectra at all the temperatures, 4 and 5 give temperature dependent ferrocene and ferrocenium-like spectra, suggesting some interaction between the $[IRu^{V}Cp(C_{*}H_{*})]^{*}$ and $Fe^{II}Cp(C_3H_4)$ moleties for the latter salts. Such counter anion effects were observed only in the solid state (the effect was found to be absent in solution, based on the results of 'H NMR spectroscopy in CD₁COCD₁). It is therefore important to investigate the crystal structures of 1, 3 and 4 in comparison with that of 2. The aim of the present work is to discuss the different results of ³⁷Fe-Mössbauer and ¹³C CP/MAS NMR studies from a structural point of view.

2. Experimental

2.1. Measurements

⁵⁷Fe-Mössbauer measurements were carried out using a ⁵⁷Co(Rh) source moving in constant acceleration mode. The isomer shift (IS) value was referred to metallic iron foil. The Mössbauer parameters were obtained by least-squares fitting to Lorentzian peaks. The experimental error of the IS and quadrupole splitting (QS) values was 0.02 mm s⁻¹. The ¹³C CP/MAS NMR measurements were carried out by the method reported previously [3].

2.2. X ray crystallography

Salts 1, 3, 4 and 5 were prepared by the method reported previously [4]. Crystals $(0.1 \times 0.1 \times 0.3 \text{ mm}^3)$ of 1, $(0.1 \times 0.1 \times 0.3 \text{ mm}^3)$ of 3 and $(0.03 \times 0.2 \times 0.3$ mm³) of **4** were selected. X-ray diffraction experiments were carried out on a Rigaku AFC-6A automated fourcircle X-ray diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The intensity data were collected at $25 \pm 1^\circ$ using the $\omega - 2\theta$ scan mode with a scanning speed of 4° min⁻¹. The l ttice parameters were determined by a least-squares calculation with 25 reflections. Crystal stability was checked by recording three standard reflections every 150 reflections, and no significant variations were observed. For 1, 6847 reflections were collected in the range $4^{\circ} \leq 20$ $\leq 55^{\circ}$, 6483 were unique ($R_{int} = 0.054$), of which 2811 reflections with $I_{obs} > 2.5\sigma(I_{obs})$ were used for the structure determination. The scan width was 1.15 + 0.3 tan θ . The refinement of 237 variable parameters converged to $R = \sum ||F_0| - |F_c|| / \sum |F_o| = 0.084$, $R_w = [\sum w(|F_0| - |F_c|)^2 / \sum wF_o^2]^{1/2} = 0.105$, where $w = 4Lp^2 F_o^2 / [S^2(C + R^2B) + (pF_o^2)^2]$ (where S = scanrate, C = total integrated peak count, R = ratio of scan

	1	3	4	
Formula	$C_{20}H_{18}I_4Ru_2$	$C_{20}H_{18}Fel_{4}Ru$	C ₂₀ H ₁₈ BF ₄ FelRu	
Formula weight	968.12	922.90	628.99	
Space group	P21/c	$P2_1/c$	P212121	
a (Å)	10.737(3)	10.575(3)	9.871(10)	
ь(Å)	23.957(3)	23.811(6)	25.581(10)	
c (Å)	9.936(3)	9.902(4)	7.810(3)	
β(°)	110.96(2)	110.85(3)		
V (Å ³)	2386(1)	2329(1)	1972(2)	
Z	4	4	4	
$D_{\rm c}$ (g cm ⁻³)	2.694	2.631	2.118	
T (°Č)	23	23	23	
λ (Å)	0.71073	0.71073	0.71073	
ц (cm ⁻¹)	64.45	65.76	31.06	
No. of ref.	6483	5157	3287	
No. of obs.	2811 (<i>I</i> > 2.5 σ (<i>I</i>))	2646 (I > 2σ(I))	$1272(I > 2.5\sigma(I))$	
R	0.084	0.049	0.094	
R _w	0.105	0.046	0.102	

Table 1 Crystal and intensity collection data for 1, 3 and 4

time to background counting time, B = total background count, Lp = Lorentz-polarization factor and p= p-factor). The standard deviation s of an observation of unit weight was 2.53. For 3, 5459 reflections were collected in the range 4° $\leq 2\theta \leq 55^\circ$, 5157 were unique $(R_{\text{int}} = 0.038)$, of which 2646 reflections with $I_{\text{obs}} >$ $2\sigma(I_{\text{obs}})$ were used for the structure determination. The scan width was 1.15 + 0.3 tan 0. The refinement of 235 variable parameters converged to R = 0.049, $R_w =$ 0.046, and s = 1.93. For 4, 3287 reflections were collected in the range 4° $\leq 2\theta \leq 60^\circ$, of which 1272 reflections with $I_{\text{obs}} > 2.5\sigma(I_{\text{obs}})$ were used for the structure determination. The scan width was $0.84 + 0.3 \tan \theta$. The refinement of 253 variable parameters converged to R = 0.094, $R_w = 0.102$ and s = 2.37.

The non-hydrogen atoms were refined anisotropically by full-matrix least-squares. For 1 and 4, hydrogen atoms were fixed at the calculated positions, and for 3 the atoms were located from the difference of Fourier maps. Neutral atom scattering factors were taken from Cromer and Waber [5]; anomalous dispersion effects corrections were included in F_{calc} [6], the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley [7]. All calculations were performed using the TEXSAN crystallographic software package [8]. Crystallographic data for 1, 3 and 4 and some of the experimental conditions for the X-ray structure analysis are listed in Table 1.

3. Results and discussion

3.1. Salts 1 and 2

The results of single-crystal X-ray studies of 1 compared with studies of 2 are discussed first. The final atomic coordinates and equivalent isotropic temperature factors B_{eq} of non-hydrogen atoms, interatomic distances, and selected bond lengths and angles for 1 are shown in Tables 2, 3 and 4, and ORTEP drawings of the cation are shown in Fig. 2 with the atom numbering system. The cation of 1 is in trans conformation as with neutral RcRc and 2 [1], i.e. the two Ru atoms sit on opposite sides of the planar $C_5H_4C_5H_4$ ligand. The $Ru(1) \cdots Ru(2)$ distance (5.273(3) Å, which is ca. 0.2 Å smaller than the value for 2 (5.464(4) Å)) shows no interaction between them. The Ru(1)-I bond length is found to be 2.756(2) Å, which is 0.039 and 0.024 Å longer than the corresponding values for the cation 2 and [RcHI]*1; respectively. The mean bond distances from Ru(1) to the ring carbon atoms ($Ru(1)-C_{ring}$) and to the cyclopentadienyl rings (Ru(1)-Cp) are 2.21(4) and 1.861(6) Å respectively, which are closer to those of the $[IRu^{IV}Cp(C_5H_4)]^+$ moiety of 2 (2.22(2) and 1.879(7) Å respectively). Similarly, mean $Ru(2)-C_{ring}$ (2.11(1) Å) and Ru(2)-Cp (1.740(3) Å) bond distances are closer to the values of the Rc moiety of 2 (2.18(1) and 1.812(3) Å respectively). Thus, the cation can be formulated as $[Ru^{II}Cp(C_5H_4C_5H_4)CpRu^{IV}I]^+$.

The most essential difference between 1 and 2 is found in the direction of the Ru^{IV}-I⁻ bond to the other half of the Rc moiety. As shown in Fig. 2, I sits in *trans* position to the Rc moiety. Therefore, a much larger distance Ru(2)-I (7.697(3) Å) and angle I(1)Ru(1)Ru(2) (145.2°) were found compared with the values for cation 2 (5.398(5) Å and 105.8° respectively). Moreover, η^5 -C₅H₄ (C(6-10) plane) shows good planarity (the deviations of all C atoms from the least-squares plane are within the range 0.0012-0.0038 Å), owing to the absence of steric hindrance between I(1) and C(6), unlike the case of **2**, where the η^5 -C₅H₄ ring is non-planar

Table 2					
Atomic coordinates and	isotropic	temperature	factors	for	1

Atom	х.	y	ĩ	B_{eq}^{a} (Å ²)	
I (1)	- 0.5783(2)	- 0.28454(7)	- 0.3418(2)	5.0	
1(2)	- 0.4999(2)	-0.05585(8)	0.1896(2)	5.7	
1(3)	-0.2545(2)	-0.11069(7)	0.1996(2)	4.7	
1(4)	- 0.0114(2)	-0.16995(6)	0.2082(2)	6.3	
Ru(1)	-0.4793(2)	-0.17808(7)	- 0.3365(2)	2.5	
Ru(2)	-0.0485(2)	-0.05814(9)	-0.2648(2)	3.8	
C (1)	-0.560(4)	-0.094(1)	-0.368(6)	7.0	
C(2)	-0.651(4)	-0.128(2)	- 0.472(4)	7.3	
C(3)	- 0.696(3)	-0.164(1)	-0.398(5)	6.2	
C(4)	-0.642(5)	-0.159(2)	-0.261(6)	9.4	
C(5)	- 0.549(4)	-0.110(2)	- 0.234(4)	8.6	
C(6)	-0.281(2)	-0.136(1)	-0.308(2)	2.6	
C(7)	- 0.335(2)	-0.164(1)	- 0.446(3)	3.5	
C(8)	-0.344(2)	-0.222(1)	-0.420(3)	3.5	
C(9)	0.297(2)	-0.228(1)	-0.271(3)	3.5	
C(10)	-0.260(2)	-0.177(1)	-0.205(2)	3.3	
C(11)	- 0.247(2)	-0.077(1)	-0.287(2)	2.7	
C(12)	-0.245(2)	-0.037(1)	-0.392(2)	3.5	
C(13)	-0.180(2)	0.011(1)	-0.325(3)	3.4	
C(14)	-0.138(2)	0.004(1)	-0.173(2)	3.1	
C(15)	-0.177(2)	-0.051(1)	-0.147(2)	2.9	
C(16)	0.051(3)	-0.131(1)	- 0.288(4)	5.8	
C(17)	0.055(3)	-0.093(1)	-0,391(3)	5.0	
C(18)	0.120(2)	-0.046(1)	-0.324(3)	4.3	
C(19)	0.162(2)	-0.053(1)	-0.180(3)	4.3	
C(20)	0.123(2)	-0.105(1)	-0.146(3)	4.9	

 $\frac{1}{4}B_{eq} = 4/3(B_{11}a^2 + B_{32}b^2 + B_{33}c^2 + B_{13}ac\cos\beta). B_{13}s \text{ are defined by } \exp[-(h^2B_{11} + k^2B_{22} + l^2B_{33} + 2klB_{23} + 2klB_{13} + 2klB_{12})].$

(the dihedral angle between the plane C(6)-C(7)-C(10) and C(7-10) being 11.60°).

The interplane $C(1) \cdots C(6)$, $C(2) \cdots C(7)$, $C(3) \cdots C(8)$, $C(4) \cdots C(9)$ and $C(5) \cdots C(10)$ dis-

tances are found to be 3.00(4), 3.40(5), 4.10(4), 4.10(6) and 3.40(5) Å respectively. The largest distance (4.10 Å) is closer to the value for [RcHI]⁺I₃⁻ (4.11(3) Å) [2], thus a similar tilting angle between the η^{5} -Cp and

Table 3 Selected Interatomic distances for 1

Atom I	Atom 2	Distance (Å)	Atom I	Atom 2	Distance (Å)	
Ru(1)	1(1)	2.756(2)	Ru(1)	Ru(2)	5.273(3)	and the second se
1(2)	1(3)	2.914(3)	1(3)	I(4)	2.944(3)	
Ru(1)	C(1)	2.17(3)	Ru(1)	C(2)	2.21(3)	
Ru(1)	C(3)	2.21(3)	Ru(1)	C(4)	2.19(3)	
Ru(1)	C(5)	2.18(3)	Ru(1)	C(6)	2.28(2)	
Ru(1)	C(7)	2.21(2)	Ru(1)	C(8)	2.18(2)	
Ru(1)	C(9)	2.18(3)	Ru(1)	C(10)	2.25(2)	
Ru(2)	C(11)	2.11(2)	Ru(2)	C(12)	2.09(2)	
Ru(2)	C(13)	2.11(2)	Ru(2)	C(14)	2.14(2)	
Ru(2)	C(15)	2.12(2)	Ru(2)	C(16)	2.10(2)	
Ru(2)	C(17)	2.13(2)	Ru(2)	C(18)	2.11(2)	
Ru(2)	C(19)	2.11(2)	Ru(2)	C(20)	2.11(2)	
C(1)	C(2)	1.40(5)	C(I)	C(5)	1.35(5)	
C(2)	C(3)	1.35(5)	C(3)	C(4)	1.28(5)	
C(4)	C(5)	1.50(5)	C(6)	C(7)	1.45(3)	
C(6)	C(10)	1.39(3)	C(7)	C(8)	1.44(3)	
C(8)	C(9)	1.38(3)	C(9)	C(10)	1.36(3)	
C(6)	C(11)	1.45(3)	C(11)	C(12)	1.42(3)	
C(11)	C(15)	1.46(3)	C(12)	C(13)	1.38(3)	
C(13)	C(14)	1.42(3)	C(14)	C(15)	1 43(3)	
C(16)	C(17)	1.37(4)	C(16)	C(20)	1 49(4)	
C(17)	C(18)	1.38(4)	C(18)	C(19)	1 35(3)	
C(19)	C(20)	1.39(4)	C (10)	~~~~	\$	

	1	2	3	4	
$M^{Ha} \cdots Ru^{IV}$	5.273(3)	5.464(4)	5.219(2)	5.324(6)	
M ^{II} -Cp ^b	1.740(3)	1.812(3)	1.649(9)	1.649(19)	
Ru ^{IV} -Cp ^c	1.861(6)	1.879(7)	1.864(9)	1.840(28)	
M ^{II} -C _{rine} (av)	2.11(1)	2.18(1)	2.03(6)	2.03(6)	
Ru ^{IV} -C _{ring} (av)	2.21(4)	2.22(2)	2.21(9)	2.21(9)	
Ru ^{IV} -I	2.756(2)	2.717(2)	2.731(2)	2.746(1)	
Crime-Crime (Fe)	1.41(3)	1.40(6)	1.41(4)	1.42(1)	
C _{ring} -C _{ring} (Ru)	1.39(3)	1.37(9)	1.42(5)	1.42(3)	
Dihedral angle					
$Cp-Ru^{IV}-C_5H_4$	31.08	42.40	32.73	39.21	

Table 4 Selected bond lengths (Å) and angles (deg) for 1-4

^a M = Ru for 1, 2 and Fe for 3, 4.

^b Fe-Cp; the distance between the Fe and η^{5} -Cp and η^{5} -C₅H₄ rings.

^c Ru-Cp; the distance between the Ru and η^5 -Cp and η^5 -C₅H₄ rings.

 η^5 -C₅H₄ planes of the Ru^{IV} side will be expected; actually the value is found to be 31.08° (32.2° for the [RcHI]⁺ cation). Therefore, the larger tilting angle between the rings (42.4°) found in cation **2** is verified by the steric hindrance between the I and two C₁ atoms (C(6) and C(11)), and as a result the non-planarity of the C₅H₄C₅H₄ plane is observed in cation **2**.

The structure of the Rc moiety of 1 is similar to that of 2; i.e. the η^5 -Cp and η^5 -C₃H₄ rings are nearly parallel (tilting angle 1.44°) and the mean interplane $C_{ring} \cdots C_{ring}$ distance of the Rc moiety is 3.41(9) Å. As shown in Fig. 2 (upper part), the η^5 -Cp and η^5 -C₅H₄ rings of the Rc moiety are essentially cclipsed, as in the case of RcH and the [RcH1]⁺ cation (rotation angle 1.2(9)°), while the two tilting rings on the Ru^{1V} side are in a nearly intermediate eclipsed and staggered state (rotation angle ca. 20(2)°), as with 2.

A stereo view of the packing down the c axis of 1 is shown in Fig. 3. The unit has an asymmetric I_{1}^{-} anion (I(2)-I(3)-I(4): distances I(2)-I(3) and I(3)-I(4) 2.914(3) and 2.944(3) Å respectively; I(2)-I(3)-I(4) angle 178.0(1)° i.e. the anion is I_{2} -I⁻ in character). The

Table 5					
Dihedral	angles	between	planes	(deg)	

- - -

shortest intermolecular $I(1) \cdots I(2)$ and $I(1) \cdots I(3)$ distances are 3.904(3) and 4.188(2) Å respectively; these values are less than the value (4.30 Å) of the van der Waals radii of two I atoms [9]; i.e. I(1) is in contact with I_3^- . However, an absence of contact between $I_3^$ anions is found (the shortest intermolecular $I_3^- - I_3^-$ distance (4.622(4) Å) is much longer than the sum of the van der Waals radii of two I atoms [9]).

The characteristic feature of the packing is found in the position of the I_3^- ; i.e. the I_3^- sits perpendicularly above the C_5H_4 plane (C(11-15)) of the Rc moiety. Fig. 4 gives a space filling plot, showing the contact between the I_3^- and cation 1. Although the I(2)⁺ \cdots C(13)⁺ (4.26(2)), I(2)⁺ \cdots C(14)⁺ (4.03(2)) and I(2)⁺ \cdots C(15)⁺ (4.21(2) Å) distances are longer than the sum of the van der Waals radii of I and C atoms (3.85 Å) [9], this packing decides the structure of the cation 1; i.e. avoiding steric hindrance between I(1) and the bulky I_3^- , the direction of the Ru^{IV}-I⁻ bond is fixed as the *trans* position to the Rc moiety when the salt 1 is crystallized. The absence of BF₄⁻ on the Ru^{II} side of the C₅H₄ plane and a demand for close packing between

Differial angles between	Junes (ueg/			COLUMN STREET, S
Plane	C(6)-C(10)	C(11)-C(15)	C(16)-C(20)	
Compound I				
C(1-5)	31.08	17.02	15.75	
C(6-10)	-us/2007	14.06	15.36	
C(11-15)		1024769	1.44	
Compound 3				
C(1)-C(5)	32.73	18.48	16.93	
C(6) - C(10)	-462.02-360	14.25	15.87	
C(11)~C(15)	as-ust	a constru	2.01	
Compound 4			40.00	
C(1) - C(5)	39.21	46.08	42.03	
C(6) - C(10)		21.32	17.81	
C(11)-C(15)			4.52	

Fig. 2. ORTEP drawing of cation 1 with thermal ellipsoids at the 40% probability level: perspective view with atomic numbering scheme (bottom), projection of a whole molecule onto the Cp plane (top).

the cation and anion, means that the direction of the $Ru^{IV}=I^-$ bond is fixed as the *cis* position to the Re molety for **2**, as shown in Fig. 1. These structural

Fig. 4. Space filling plot showing the contact between I_3^- and the cation 1.

differences, caused by the counter ions, are also reflected in the results of solid state NMR.

Fig. 5 shows ¹³C CP/MAS NMR spectra of (a) 1 and (b) 2. Two sharp signals are observed for both the salts. For 1, the lower field ¹³C signal at δ 93.5 is ascribed to the Cp- and C₅H₄-ring (C_{2.5} positions) of the Ru^{1V} side, and at δ 78.0 to those of the Ru^{II} side. The reason for the smaller peak intensity of the Ru^{IV} side compared with that of the Ru^{II} side is explained by the overlapping of the other C₅H₄-ring signal (C_{3.4} positions) of the Ru^{IV} side to the Ru^{II} signal on the basis of ¹³C NMR spectroscopy in solution [4]. All attempts to find the C₁ signals of the Ru^{II} and Ru^{IV}

Fig. 3. Projection of the unit cell of 1 along the c axis.

Fig. 5. ¹³C CP/MAS NMR spectra of (a) 1 and (b) 2.

 Table 6

 Atomic coordinates and isotropic temperature factors for 3

sides have been unsuccessful because of their poor intensities. For 2, ring carbon signals of the Ru^{II} side are observed at δ 77.7, those of the Ru^{IV} side at δ 88.7, which is a higher field shift (ca. $\Delta \delta = 4.8$) compared with the value of 1 because of the structure difference between them. I is in van der Waals contact with the C₅H₄-ring of the Ru^{II} side for 2, thus the higher positive charge of Ru^{IV} may be delocalized over Ru^{IV}– $I \cdots C_5H_4CpRu^{II}$, resulting in the higher field shift observed in the [IRu^{IV}Cp(C₅H₄)]⁺ moiety. In contrast, the absence of such contact in 1 gives no higher field shift of the Ru^{IV} side.

As described in the Introduction, these counter anion effects are observed only in the solid state. From results of 'H NMR spectroscopy of 1 in CD₃COCD₃, the absence of the counter anion effect was observed [10]; i.e. 1 gives six sharp signals in CD_3COCD_3 at 183 K; δ 6.41 (2H), 6.05 (5H), 5.76 (2H), 5.33 (2H), 5.19 (2H) and 4.61 (5H). The former three signals are assigned as ring protons of the $[IRu^{IV}Cp(C_5H_4)]^+$ moiety, and the latter three signals as the $Ru^{II}Cp(C_5H_4)$ moiety. The same δ values are observed for the analogous BF₄⁻ 2 and PF_6^- salts, implying no interaction between the anion and the cation in solution. Avoiding steric hindrance between the I and two C_1 atoms in the $C_5H_4C_5H_4$ ligand in solution, the direction of the Ru^{IV}-I bond may be fixed as the trans position to the Rc moiety in acetone, as for 1 in solid. In order to estimate the central metal positive charge, ⁵⁷Fe-

Atom		y Y	iş Kı	$B_{\rm eq}^{-a}$ (Å ²)	and the second second second
1(1)	0.0858(1)		- 0.1572(1)	5.1	
K2)	-0.0073(1)	0.05501(5)	0.1875(1)	5.5	
I (3)	0.2397(1)	0.10960(4)	0.1952(1)	4.0	
I(4)	0.4862(1)	0.16975(6)	0.2046(1)	6.1	
Ru	-0.0155(1)	-0.32093(4)	-0.1617(1)	2.3	
Fe	-0.4471(2)	-0.44110(7)	- 0.2325(2)	2.1	
C(1)	0.061(2)	-0.4049(7)	-0.131(3)	5.4	
C(2)	0.058(2)	-0.3906(9)	- 0.264(2)	6.6	
C(3)	0.146(2)	-0.3426(9)	-0.095(3)	5.8	
C(5)	0.152(2)	-0.3734(9)	-0.025(2)	5.6	
C(6)	-0.217(1)	-0.3642(5)	-0.186(1)	2.1	
C(7)	- 0.237(1)	-0.3226(6)	0.296(1)	2.9	
C(8)	-0.202(1)	0.2698(5)	-0.227(2)	3.3	
C(9)	-0.154(1)	-0.2785(5)	-0.078(1)	2.6	
C(10)	-0.162(1)	-0.3352(6)	-0.051(1)	3.0	
C(11)	-0.257(1)	-0.4220(5)	-0.210(1)	2.3	
C(12)	-0.321(1)	0.4483(5)	-0.345(1)	2.6	
C(13)	-0.363(1)	-0.5023(5)	-0.320(2)	3.0	
C(14)	-0.322(1)	- 0.5092(6)	-0.170(1)	3.0	
C(15)	-0.256(1)	-0.4601(5)	- 0.098(1)	2.3	
C(16)	-0.542(1)	-0.3685(6)	- 0.218(2)	4.2	
C(17)	-0.610(1)	- 0.3934(8)	- 0.349(2)	4.7	
C(18)	-0.654(1)	0.4460(7)	-0.325(1)	3.3	
C(19)	-0.611(1)	- 0.4537(6)	-0.176(2)	3.7	
C(20)	-0.544(1)	-0.4050(7)	-0.108(2)	3.9	

 $\overline{B_{e_0}} = 4/3(B_{11}a^2 + B_{22}b^2 + B_{33}c^2 + B_{13}ac\cos\beta), B_{11}s \text{ are defined by } \exp[-(h^2B_{11} + k^2B_{22} + l^2B_{33} + 2klB_{23} + 2hlB_{13} + 2hkB_{12})].$

Mössbauer spectroscopy and X-ray diffraction studies were carried out using salts 3-5.

3.2. Salts 3-5

The results of X-ray studies of 3 are discussed first. Tables 6 and 7 show the final atomic coordinates and equivalent isotropic temperature factors B_{eq} of non-hydrogen atoms and selected bond lengths for 3 respectively. Fig. 6 is a ORTEP drawing of the cation 3. The structure of the cation is similar to that of 1; i.e. the direction of the Ru-I bond is *trans* to the Fc moiety. The Ru-I, Fe \cdots Ru and Fe \cdots I distances are found to be 2.731(2), 5.219(2) and 7.492(2) Å respectively. These values correspond well with the values for 1 (2.756(2), 5.273(3) and 7.697(3) Å respectively). The I-Ru \cdots Fe angle (138.7°) is 6.5° smaller than that for 1.

The mean Ru-Cp and Ru-C_{ring}, Fe-Cp and Fe-C_{ring} distances are 1.864(9) and 2.21(9), 1.649(9) and 2.03(6) Å respectively. The former two values are closer to the values for the [IRu^{IV}Cp(C₅H₄)]⁺ moiety of 1, and the latter two values to those for ferrocene (1.65 and 2.045 Å) [11]. Thus the oxidation states of Ru and Fe are assigned formally as Ru^{IV} and Fe^{II}; i.e. the formula of the cation is given as [Fe^{II}Cp(C₅H₄C₅H₄)CpRu^{IV}I]⁺, as already verified using ⁵⁷Fe-Mössbauer spectroscopy [12]. The tilting angle between the Cp and C₅H₄ planes on the Rc moiety is 32.73° (2.01° for the Fc moiety), this is slightly larger than the value for 1. As in the case of 1, the Cp and C₅H₄ planes of the Fc moiety are eclipsed (the rotation angle between them is ca. 1(1)°),

Table 7

Selected	interatomic	distances	for J	

Fig. 6. ORTEP drawing of cation **3** with thermal ellipsoids at the 40% probability level: perspective view with atomic numbering scheme (bottom), projection of a whole molecule onto the Cp plane (top).

These two planes of the Rc moiety are in an intermediate eclipsed and staggered state (the rotation angle between them is ca. $19(2)^{\circ}$). The packing of the cation

Atom I	Atom 2	Distance (Å)	Atom 1	Atom 2	Distance (Å)
Ru	K(1)	2.731(2)	Ru	Fe	5.219(2)
1(2)	I(3)	2.894(2)	I(3)	1(4)	2.946(2)
Ru	C (1)	2.14(2)	Ru	C(2)	2.21(2)
Ru	C(3)	2.18(1)	Ru	C(4)	2.21(2)
Ru	C(5)	2.19(1)	Ru	C(6)	2.30(1)
Ru	C(7)	2.24(1)	Ru	C(8)	2.21(1)
Ru	C(9)	2.17(1)	Ru	C(10)	2.22(1)
Fe	C(11)	2.00(1)	Fe	C(12)	2.03(1)
Fe	C(13)	2.05(1)	Fe	C(14)	2 04(1)
Fe	C(15)	2.04(1)	Fe	C(16)	203(1)
Fe	C(17)	2,04(1)	Fe	C(18)	2.05(1)
Fe	C(19)	2.03(1)	Fe	C(20)	2.05(1)
C(1)	C(2)	1.35(3)	αn	C(5)	1 3777)
C(2)	C(3)	1.32(3)	C(3)	C(4)	1 27(2)
C(4)	C(5)	1.33(2)	(76)	(17)	1.42(3)
C(6)	C(10)	1,43(2)	(7)	C(8)	1.43(2)
C(8)	C(9)	1.40(2)	ന്ന	C(10)	1.41(2)
C(6)	C(11)	1.43(2)	and a second	C(10)	1.20(4)
C (11)	C(15)	1.43(2)	C(1)	((12)	1.42(2)
C(13)	C(14)	1.41(2)			1.41(2)
C(16)	C(17)	1.38(2)	C(14) C(16)		1.42(2)
C(17)	C(18)	1 38(2)	C(10)	C(20)	1.40(2)
C(19)	C(20)	1.40(2)	C(10)	C(19)	1.39(2)

Fig. 7. ORTEP drawing of cation 4 with thermal ellipsoids at the 40% probability level: perspective view with atomic numbering scheme (bottom), projection of a whole molecule onto the Cp plane (top).

and I_3^- is the same as with 1; i.e. the I_3^- sits on the C_5H_4 plane (C(11-15)) of the Fc moiety (the shortest I(2) to C atoms distance is 3.94(1) Å (I(2)⁻ ·· C(13)⁻)). All the crystal data of 3 indicate that its crystal structure is homologous to that of 1.

In contrast, the crystal data of 4 is different from that of 2; e.g. the space groups of 2 and 4 are $P2_1/n$ and $P2_12_12_1$ respectively and the cell parameters of 2 (a =25.078(12), b = 10.599(12), c = 7.652(8) Å, $\beta =$ 95.17(8)°) are different from those of 4 (a = 9.871(10),

 Table 8
 Atomic coordinates and isotropic temperature factors for 4

Atom			෭෭෦෭෪෪෪෩෦෫෪෪෪෫෪෪෪෯෯෯෯෮෮෮෪෪෪෪෩෦෫෮෭෪෮෪෪෪෪෩෦෪෪෪෪෪෪෪෪෪෪෪෪෪෪ ෦෯ ෪ඁ෦	\mathcal{B}_{ci} (Å ²)	
	0.0839(4)	0.1433(1)	0.1722(3)	4.5	
Ru	0.2074(4)	0.1821(1)	-0.1157(4)	2.9	
Fe	~ 0,0049(6)	0.0010(2)	-0.3166(7)	2.8	
F(1)	0.504(5)	0.183(3)	0.472(6)	14.7	
F(2)	0.676(5)	0.151(1)	0.359(4)	11.2	
F(3)	0.613(4)	0.135(1)	0.630(4)	10.3	
F(4)	0.692(6)	0.210(1)	0.556(5)	11.2	
C(1)	0.376(6)	0.202(2)	0.067(6)	6.2	
C(2)	0.278(8)	0.242(1)	0.072(6)	7.4	
C(3)	0.255(7)	0.263(2)	-0.080(6)	6.6	
C(4)	0.373(5)	0.235(3)	-0.166(8)	11.6	
C(5)	0.415(5)	0.192(2)	-0.093(7)	13.5	
C(6)	0.118(4)	0.104(1)	-0.243(4)	2.3	
C(7)	0.224(4)	0.128(2)	-0.333(5)	4.7	
C(8)	0.185(5)	0,178(2)	-0.388(4)	12.7	
C(9)	0.048(6)	0.188(2)	- 0.309(6)	5.8	
C(10)	0.006(5)	0.146(2)	-0.220(5)	5.4	
Q(1)	0.111(4)	0.052(2)	-0.187(4)	4.7	
C (12)	0.005(4)	0.031(2)	-0.078(4)	2.8	
C(13)	0.025(6)	-0.025(2)	- 0.069(5)	5.6	
C(14)	().141(4)	-0.037(2)	-0.183(5)	4.2	
C(15)	0.188(4)	0.010(2)	-0.239(5)	3.3	
C(16)	-0.125(5)	0.038(2)	- 0.497(6)	5.2	
C(17)	-0.182(6)	0.011(3)	-0.390(7)	8.2	
C(18)	-0.196(7)	-0.023(4)	-0.398(5)	12.3	
C(19)	- 0.094(9)	-0.053(3)	0.498(9)	20.3	
C(20)	-0.027(4)	-0.001(4)	- 0.568(7)	11.3	
B	0.621(5)	0.171(2)	0.514(5)	3.4	

 $\overline{a} B_{eq} = 4/3(B_{11}a^2 + B_{22}k^2 + B_{33}c^2 + B_{13}ac \cos \beta). B_{ij} \text{s are defined by } \exp[-(h^2B_{11} + k^2B_{22} + l^2B_{33} + 2klB_{23} + 2klB_{13} + 2kkB_{12})].$

b = 25.581(10), c = 7.810(3) Å). Fig. 7 shows an ORTEP drawing of the cation of 4 formulated as $[Fe^{II}Cp(C_5H_4C_5H_4)CpRu^{IV}I]^+$. The distance between Fe^{II} and Ru^{IV} is 5.324(6) Å, which is ca. 0.14 Å smaller than the value for 2, as shown in Table 9. The mean $Fe-C_{ring}$ (1.649(19)), Fe-Cp (2.03(6)), $Ru-C_{ring}$ (1.840(28)) and Ru-Cp (2.21(9) Å) distances agree with the corresponding values for 3. The most interesting structural feature of the cation is the direction of the Ru-I bond to the C_5H_4 plane of the Fc moiety; I is coordinated to Ru from the oblique side of the Fc moiety. The torsion angle I-Ru-C(6)-C(11) is $43.0(1)^\circ$, while the angle for 3 is small $(9(1)^\circ)$; the same value is found for 1). The $I \cdots C(6)$ distance (3.386(1) Å) is longer than the value for 2 (3.188(8) Å), suggesting less steric hindrance between I and C(6). The smaller tilting angle (39.21°) between the Cp and C_5H_4 rings of the Ru^{IV} side, and the lesser non-planarity of the C₅H₄ plane of the Ru^{IV} side compared with those of 2, are explained by the same reason.

Fig. 8 shows ¹³C CP/MAS NMR spectra of (a) 3 and (b) 4. For 3, two broad main ¹³C peaks ($\delta = 93.1$ and 75.8) are observed. On the basis of previous studies, the signal at lower field is ascribed to the Cp and C_{2.5} of the [Cp(C₅H₄)Ru^{1V}I]⁺ moiety, and the signal at higher field to the Cp(C₃H₄)Fe¹¹ moiety. The much larger peak intensity of the latter is explained by the same reason described for 1 and 2. For 4, three broad main signals ($\delta = 89.4$, 75.9 and 73.1) are observed; the lower field signal ($\delta = 89.4$) is ascribed to the Cp and C_{2.5} of the [IRu^{1V}Cp(C₃H₄)]⁺ moiety, the higher signal

Table 9 Selected interatomic distances for 4

Fig. 8. ¹³C CP/MAS NMR spectra of (a) 3, (b) 4 and (c) 5,

Atom 1	Atom 2	Distance (Å)	Atom 1	Atom 2	Distance (Å)
Ru	K(1)	2.745(4)	Ru	Fe	5.324(6)
B	F(1)	1.24(6)	В	F(2)	1.40(5)
B	F(3)	1.29(5)	В	F(4)	1.26(6)
Ru	C(1)	2.24(5)	Ru	C(2)	2.22(4)
Ru	C(3)	2.13(5)	Ru	C(4)	2.15(5)
Ru	C(5)	2.09(5)	Ru	C(6)	2.41(3)
Ru	C(7)	2.23(4)	Ru	C(8)	2.14(2)
Ru	C(9)	2.23(5)	Ru	C(10)	2.36(4)
Fe	C (11)	2.00(4)	Fe	C(12)	2 (13(3)
Fe	C(13)	2.07(4)	Fe	C(14)	2 (3(4)
Fe	C(15)	2.00(4)	Fe	C(16)	2 ()8(4)
Fe	C(17)	1.96(8)	Fe	C(18)	2 04(5)
Fe	C(19)	2.12(6)	Fe	C(20)	1 08(5)
C (1)	C(2)	1.42(8)	(U)	C(S)	1 38(3)
C(2)	C(3)	1.32(5)	C(3)	C(4)	1.45(0)
C(4)	C(5)	1.35(8)	C(6)	(17)	1.43(5)
C(6)	C(10)	1,44(9)	C(7)	C(N)	1.42(3)
C(8)	C(9)	1,49(8)	(9)		1 29(7)
C(6)	C(11)	1.37(5)	ດັບນ		1.30(7)
C(11)	C(15)	1.37(5)	C(12)	C(12)	1.49(3)
C(13)	C(14)	1.48(6)	C(14)	((15) ((15)	1.40(0)
C(16)	C(17)	1.36(7)		C(13) ((13))	1.33(0)
C(17)	C(18)	134(7)	C(19)	C(20)	1.43(8)
C(19)	C(20)	1.40(5)	C(10)	C(19)	1.39(7)

 $(\delta = 73.1)$ to the Cp and C_{3,4} of the Fc moiety, and the signal ($\delta = 75.9$) to the C_{3,4} (Ru side) and C_{2,5} (Fe side). The higher field shift ($\Delta\delta$ ca. 4 ppm) is also observed for the [IRu^{IV}Cp(C₅H₄)]⁺ moiety in 4 owing to the same reason described previously for 2 compared with 1.

Fig. 9 shows ⁵⁷Fe-Mössbauer spectra of (a) 4 and (b) the related PF_6 salt 5 at the indicated temperatures. Although no temperature dependence was observed for **3** (IS 0.52, QS 2.16 mm s⁻¹ at 78 K; IS 0.43, QS 2.16 mm s⁻¹ at 300 K), significant temperature dependence is observed for 4; i.e. the two types of Fe atom are observed at 300 K. One is a large portion of a ferrocene-like component (IS 0.43, QS 2.05) and the other is a small portion of a ferrocenium-like one (IS 0.43). At decreasing temperatures, the intensity of the Fe¹¹¹ component decreases and only the Fe^{II} component (IS 0.51, QS 2.20 mm s^{-1}) remains at 78 K. Such temperature dependence of the ⁵⁷Fe-Mössbauer spectra is observed remarkably for 5, with the ⁵⁷Fe-Mössbauer spectrum at 78 K showing a ferrocene-like doublet (QS 2.13, IS 0.50 mm s^{-1}) accompanied by a broad singlet of ferrocenium character (IS 0.45 mm s^{-1}). The areal intensity ratio (Fe(III)/(Fe(II) + Fe(III)) κ is ca. 0.14. With increasing temperature, a decreasing ferrocene-like line (QS 1.97, IS 0.44 mm s⁻¹) and increasing ferrocenium-like line (QS 0.37, IS 0.42 mm s⁻¹) are observed, the κ value is found to be ca. 0.46 (for 4 the κ value is ca. 0.20 at 300 K); i.e. the oxidation state of the Fe atom in 5 is closer to that of ferrocenium compared with the case of 3 (Fe¹¹) and 4. This result corresponds well with that of the ¹³C CP/MAS NMR spectra. Because of the paramagnetic ferrocenium species, three broader ¹³C CP/MAS NMR signals ($\delta = 88.8$, 74.4 and 78.6) were found for 5, as shown in Fig. 8(c). The lower field signal ($\delta = 88.8$) is ascribed to the Cp and C_{2.5} ring carbons of the [IRu^{IV}Cp(C₅H₄)]⁺ moiety and the other two signals to the Rc and C_{3.4} ring carbons of the [IRu^{IV}Cp(C₅H₄)]⁺ moiety.

Although X-ray diffraction studies of 5 have been carried out, the final R (0.12) and standard deviation values are too large to describe because of a lack of success in preparing single crystals of suitable size and the larger thermal motion of PF₆⁻. However, it is still useful to discuss the structure of 5 in comparison with that of 4. The crystal form of 5 is $P4_1$, a = 10.72(1), c = 18.60(2) Å, V = 2137 Å³ and Z = 4. The conformation of the cation is quite similar to that of 2; the Ru–I bond (2.741(6) Å) sits just above the C₅H₄ plane of the Fc moiety, unlike the case of 4. The torsion angle I-Ru-C(6)-C(11) is negligible. The I \cdots C(6) distance (3.286(6) Å) is much smaller (ca. 0.3 Å) than the value

Velocity (mm s⁻¹)

Fig. 9. ⁵⁷Fe-Mössbauer spectra of (a) 4 and (b) 5 at the indicated temperatures.

Fig. 10. Space filling plot showing the difference in structure of cations 4 (a) and 5 (b).

for 4; i.e. the coordinated I atom sits closer to the C_5H_4 plane of the Fc moiety (van der Waals contact), as shown in Fig. 10(b), unlike the case of 3 and 4. That conformational change may be deeply concerned with the results of ⁵⁷Fe-Mössbauer spectra for 3-5.

For the last two decays, ⁵⁷Fe-Mössbauer spectroscopic and X-ray studies have been reported on the mixed-valence I', I"-dialkylbiferrocenium and I', I"-dihalobiferrocenium salts [13-17]. Results of the ³⁷Fe-Mössbauer spectroscopy of 1',1"-diethylbiferrocenium I_3 and biferrocenium I_3 indicate the presence of significant interaction between the Cp or C₄H₄ planes and I_3^- (van der Waals contact between the Cp-ring and I atom), which is the driving force for the temperature dependence of the Mössbauer spectra. Moreover, Konno et al. [15] concluded that the van der Waals contact between the halogen atoms (X = I, Br)and the other C_3H_4 plane of the fulvalene molety is the driving force for the averaged valence state of the mixed-valence 1',1"-diiodo- and 1',1"-dibromobiferrocenium salts, even at low temperature (4.2 K) [15], Considering these reported facts and the results of the present studies, it seems reasonable to conclude that the positive charge of Ru^{IV} is delocalized over $C_5H_4Ru^{IV}$ - $1^{-} \cdots C_{5} H_{4} Fe^{11}$ through the overlap between 1^{-} and the C_5H_4 plane, giving a larger portion of ferrocenium-like species for 5 at 300 K compared with 4. With the absence of such an interaction, 3 gives ferrocene-like ⁵⁷Fe-Mössbauer spectra at all temperatures.

Like the case of 1 and 2, the absence of a counter anion effect is observed in acetone with ¹H NMR spectroscopy; i.e. six sharp signals (δ 6.58 (2H), 5.97 (2H), 6.10 (5H), 5.05 (2H), 5.13 (2H) and 4.29 (5H)) are observed at 183 K for 3. The former three signals are assigned as ring protons of $[IRu^{IV}Cp(C_5H_4)]^+$ and the latter three signals as the Fe^{II}Cp(C₅H₄) moiety. Six quite similar signals were observed for 4 and 5 under the same conditions [18], implying that the direction of the Ru^{IV}-I bond is fixed as the *trans* position to the Fc moiety in solution.

From the results of the present study, it can be found that the structure of the cations 1-5 formulated as $[M^{II}Cp(C_5H_4C_5H_4)CpRu^{IV}I]^+$ is dependent on the counter anion effect (I_3, BF_4^-) and PF_6^-). The direction of the Ru^{IV}-I bond is fixed as the trans position to the $M^{H}Cp(C_{5}H_{4})$ moiety for I_{3}^{-} salt (1, 3) avoiding steric hindrance between the bulky I_3^- and the Ru^{IV}-I bond. In the case of BF_4^- (2, 4) and PF_5^- (5) salts, the Ru^{IV}-I bond is fixed as the *cis* position to the $M^{II}Cp(C_{s}H_{s})$ moiety, which gives the large tilted structure found in the $[Cp(C_sH_4)Ru^{IV}I]^+$ moiety and the non-planarity of the $C_5H_4C_5H_4$ plane caused by the van der Waals contact between I and the C_5H_4 -ring of the M^{II}CpC₅H₄ moiety. This contact gives the delocalization of the higher positive $[IRu^{1V}CpC_5H_4]^+$ charge to the $M^{11}CpC_5H_4$ moiety based on the results of ^{13}C CP/MAS and ⁵⁷Fe-Mössbauer spectroscopic studies.

References

- M. Watanabe, I. Motoyama, M. Shimoi and T. Iwamoto, *Inorg. Chem.*, 33 (1994) 2518.
- [2] Y.S. Sone, A.W. Schlüter, D.N. Hendrickson and H.B. Gray, *Inorg. Chem.*, 13 (1974) 301.
- [3] M. Wutanabe, I. Motoyama, T. Takayama, M. Shimoi and H. Sano, J. Organomet. Chem., 496 (1995) 87.
- [4] M. Watanabe, T. Iwamoto, A. Kubo, S. Kawata, H. Sano and I. Motoyama, *Inorg. Chem.*, 31 (1992) 177.
- [5] D.T. Cromer and J.T. Waber, International Table for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, UK, 1974, Table 2.2 A.
- [6] J.A. Ibers and W.C. Hamilton, Acta Crystallogr., 17 (1964) 781.
- [7] D.C. Creagh and W.J. McAuley. International Table for X-ray Crystallography, Vol. C, Kluwer Academic, Boston, 1992, Table 4.2.6.8, pp. 219–222.
- [8] TEXSAN: Crystal Structure Analysis Package, Molecular Structure Corp. 1985.
- [9] L. Pauling, *The Nature of the Chemical Bond*, Cornell University Press, 3rd edn., 1960.
- [10] M. Watanabe, T. Iwamoto and H. Sano, J. Organomet. Chem., 446 (1993) 177.
- [11] P. Seiler and J.D. Dunitz, Acta Crystallogr., B35 (1979) 1068.
- [12] M. Watanabe, Y. Masude, I. Motoyama and H. Sano, Bull. Chem. Soc. Jpn., 61 (1988) 827.
- [13] T.-Y. Dong, D.N. Hendrickson, K. Iwai, M.J. Cohn, S.J. Geib, A.L. Rheingold, H. Sano, I. Mctoyama and S. Nakashima, J. Am. Chem. Soc., 107 (1985) 7996.
- [14] T.-Y. Dong, D.N. Hendrickson, C.G. Pierpont and M.F. Moore, J. Am. Chem. Soc., 108 (1986) 963.

- [15] M. Konno, S. Hyodo and S. Iijima, Bull. Chem. Soc. Jpn., 55 (1982) 2327; M. Konno and H. Sano, Bull. Chem. Soc. Jpn., 61 (1988) 1455.
- [16] M.J. Cohn, T.-Y. Dong, D.N. Hendrickson, S.J. Geob and A.L. Rheingold, J. Chem. Soc., Chem. Commun., (1985) 1095.
- [17] M.H. Morrison, Jr. and D.N. Hendrickson, Inorg. Chem., 14 (1975) 2331.
- [18] M. Watanabe, T. Iwamoto, H. Sano and I. Motoyama, J. Organomet. Chem., 455 (1993) 197.